

Corporate Technology

Formal security analysis and certification in industry, at the example of an AADS¹

Dr. David von Oheimb Siemens Corporate Technology

Guest lecture on invitation by Dr. Ricarda Weber at CS department of TU Munich, Germany, 27 May 2008

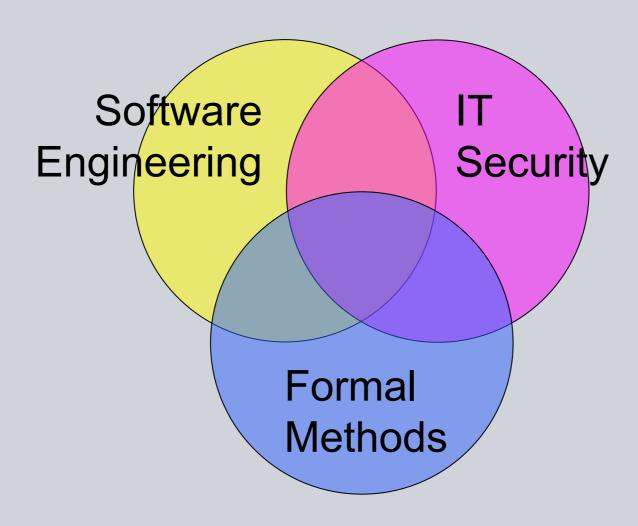
http://www11.in.tum.de/Veranstaltungen/SecurityEngineering2008/

¹Airplane Assets Distribution System

Overview

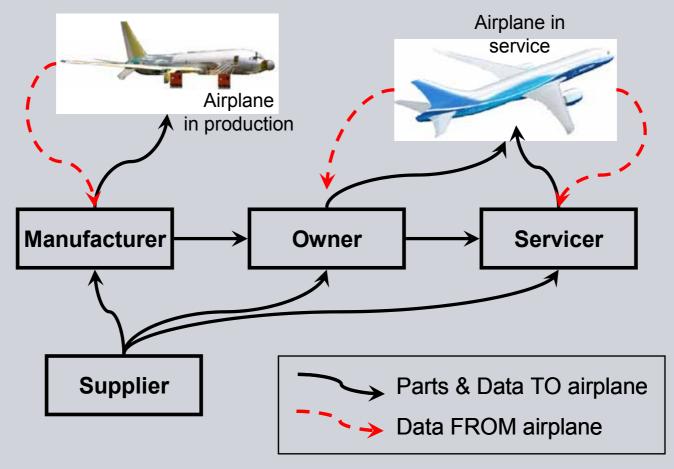
- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

Siemens Corporate Technology: About 1,800 Researchers and Developers Worldwide ...


Security Applications & Methods

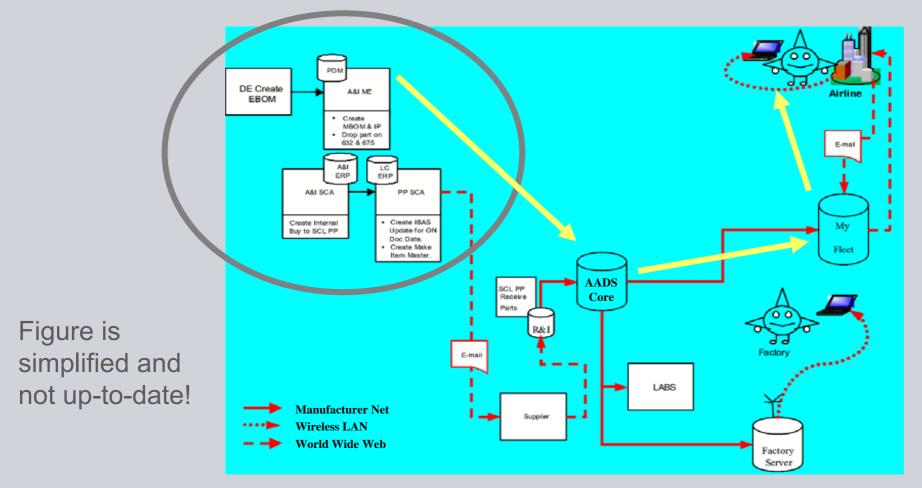
- **♣** Secure Operating Systems, Trusted Platform Modules (TPM)
- General Purpose Security Mechanisms:
 - Role / Policy Based Access Control (RBAC)
 - Public Key Infrastructure (PKI),
 - Single Sign-On (SSO)
- **♣** Security of Service Oriented Architecture (SOA): Web Services etc.
- Application-level security: e-health, e-government, e-Commerce
- Digital Rights Management (DRM)
- Formal Methods and Certification

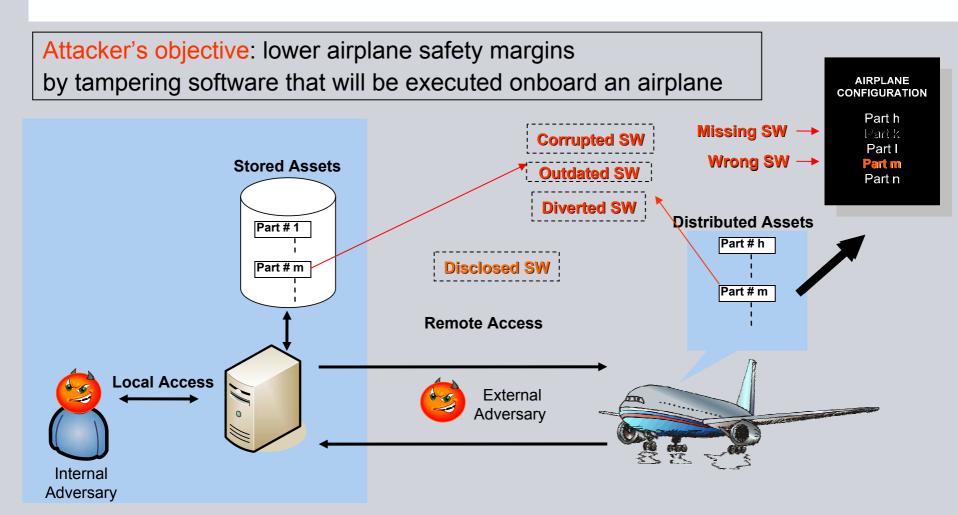
Fields


Overview

- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

Airplane Assets Distribution System


AADS is a system for storage and distribution of airplane assets, including Loadable Software Airplane Parts (LSAP) and airplane health data


AADS architecture

A complex distributed store-and-forward middleware with OSS components

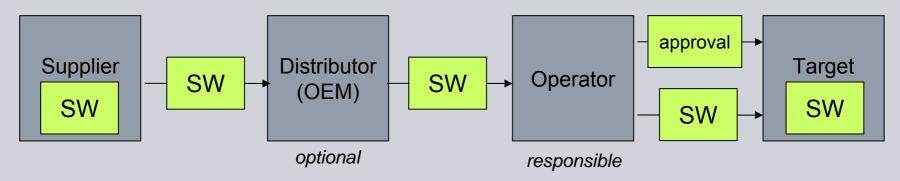
Security threats at the airplane example

Corruption/Injection

Wrong Version

Diversion

Disclosure

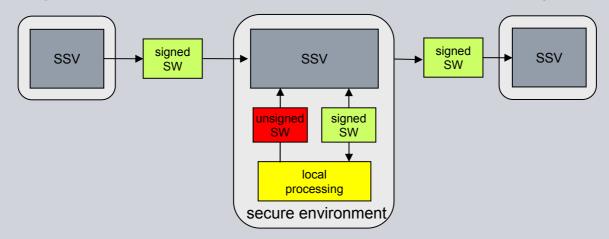


Software Distribution System (SDS)

ICT systems with networked devices in the field performing safety-critical and/or security-critical tasks. Field devices require secure software update.

→ Software Distribution System (SDS):

System providing secure distribution of software (SW) from software supplier to target devices in the field


Transition from media-based (CD-ROMs etc.) to networked SW transport increases security risks due to transport over open, untrusted networks

Software Signer Verifier (SSV)

Each node in SDS runs an SSV instance, used for:

- Introducing unsigned software into the SDS,
 by digitally signing and optionally encrypting it
- Verifying the signature on software received from other SSVs,
 checking integrity, authenticity and authorization of the sender
- Approving software by adding an authorized signature
- Delivering software out of the SDS after successfully verifying it

Overview

- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

IT Security as a System Engineering Problem

 IT security aims at preventing, or at least detecting, unauthorized actions by agents in an IT system.

In the AADS context, security is a prerequisite of safety.

Safety aims at the absence of accidents (→ airworthiness)

Situation: security loopholes in IT systems actively exploited

Objective: thwart attacks by eliminating vulnerabilities

Difficulty: IT systems are very complex. Security is interwoven with the whole system, so very hard to assess.

Remedy: evaluate system following the Common Criteria approach

- address security systematically in all development phases
- perform document & code reviews and tests
- for maximal assurance, use formal modeling and analysis

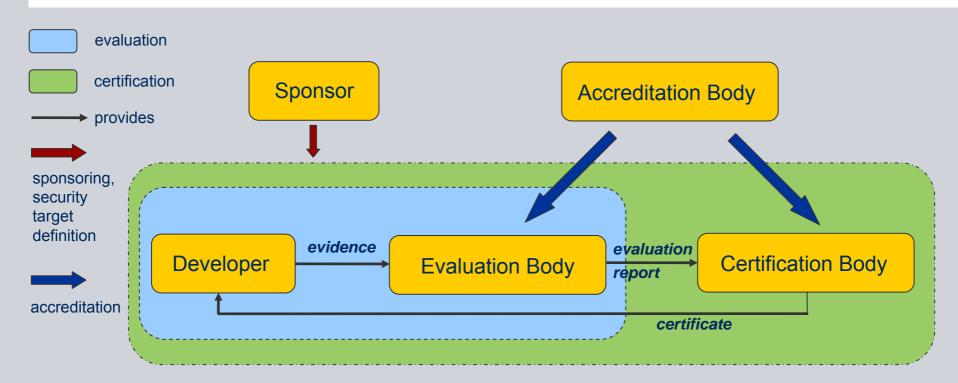
Common Criteria (CC) for IT security evaluation

product-oriented methodology for IT security assessment ISO/IEC standard 15408

Current version: 3.1 of end-2006

Aim: gain confidence in the security of a system

- What are the objectives the system should achieve?
- Are the measures employed appropriate to achieve them?
- Are the measures implemented and deployed correctly?


CC General Approach

Approach: assessment of system + documents by neutral experts

- Gaining understanding of the system's security functionality
- Checking evidence that the functionality is correctly implemented
- Checking evidence that the system integrity is maintained

CC Process Scheme

Certification according to the Common Criteria is a rather complex, time consuming and expensive process.

A successful, approved evaluation is awarded a certificate.

CC: Security Targets

Security Target (ST): defines extent and depth of the evaluation

for a specific product called *Target of Evaluation (TOE)*

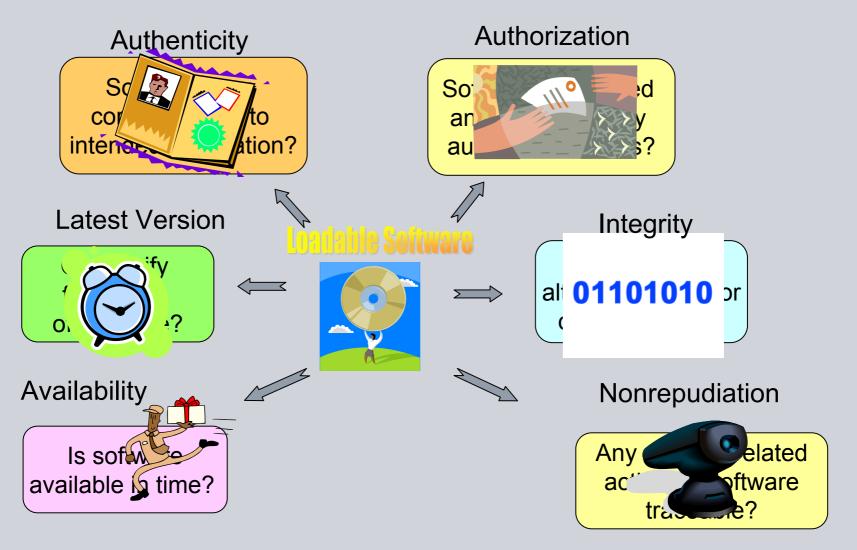
Protection Profile (PP): defines extent and depth of the evaluation for a whole class of products, i.e. firewalls

STs and PPs may inherit ('claim') other PPs.

ST and PP specifications use **generic** "construction kit":

- Building blocks for defining Security Functional Requirements (SFRs)
- Scalable in depth and rigor: Security Assurance Requirements (SARs)

layered as Evaluation Assurance Levels (EALs)



AADS Security Specification: CC Protection Profile (1)

- 1. Introduction
- 2. System Description Target of Evaluation (TOE)
- 3. Security Environment
 - Assets and Related Actions
 - Threats
 - Required Assurance Level
 - Assumptions
- 4. Security Objectives
 - . . .
 - Rationale

Security Objectives for AADS

Threats Addressed by the AADS Security Objectives

Threats Objectives		Safety-relevant				Business-relevant				
		Corruption	Misconfiguration	Diversion	Staleness	Unavailability	Late Detection	False Alarm	Repudiation	
Safety- relevant	Integrity	$\sqrt{}$								
	Correct Destination			V						
	Latest Version				√					
	Authentication	$\sqrt{}$	√						V	
	Authorization	$\sqrt{}$	V							
	Timeliness				√					
Business- Relevant	Availability					$\sqrt{}$				
	Early Detection						√			
	Correct Status							V		
	Traceability	$\sqrt{}$	√						V	
	Nonrepudiation								V	
	Part_Coherence	$\sqrt{}$	√	$\sqrt{}$						
Environment	Loading_Interlocks	√	√	V						
	Protective_Channels	V								
	Network_Protection				√	V				
	Host_Protection	V							V	
Assumptions	Adequate_Signing	$\sqrt{}$								
	Configuration		V							
	Development	V	V	V	√	V	V	V	V	
	Management	$\sqrt{}$	V						V	

20

AADS Security Specification: CC Protection Profile (2)

- 1. Introduction
- 2. System Description
- 3. Security Environment
 - Assets and Related Actions
 - Threats
 - Required Assurance Level
 - Assumptions
- 4. Security Objectives
 - ...
 - Rationale
- 5. Security Functional Requirements
 - ...
 - Rationale

CC: Security Functional Requirements (SFRs) overview

FAU: Security audit

- Security audit automatic response (FAU_ARP)
- Security audit data generation (FAU_GEN)
- Security audit analysis (FAU_SAA)
- Security audit review (FAU_SAR)
- Security audit event selection (FAU_SEL)
- Security audit event storage (FAU_STG)

FCO: Communication

FCS: Cryptographic support

FDP: User data protection

FIA: Identification and authentication

FMT: Security management

FPR: Privacy

FPT: Protection of the TSF

FRU: Resource utilization

FTA: TOE access

FTP: Trusted path/channels

	Assurance class	Assurance Family	Assurance Components by Evaluation Assurance Level							
		•	EAL1	EAL2	EAL3	EAL4	EAL5	EAL6	EAL7	
CC: EALs		ADV_ARC		1	1	1	1	1	1	
	Development	ADV_FSP	1	2	3	4	5	5	6	
		ADV_IMP				1	1	2	2	
		ADV_INT					2	3	3	
		ADV_SPM						1	1	
Security		ADV_TDS		1	2	3	4	5	6	
	Guidance	AGD_OPE	1	1	1	1	1	1	1	
Assurance	documents	AGD_PRE	1	1	1	1	1	1	1	
Requirements		ALC_CMC	1	2	3	4	4	5	5	
•		ALC_CMS	1	2	3	4	5	5	5	
(SARs)	Life avale	ALC_DEL		1	1	1	1	1	1	
grouped as	Life-cycle support	ALC_DVS			1	1	1	2	2	
		ALC_FLR								
grouped as		ALC_LCD			1	1	1	1	2	
		ALC_TAT				1	2	3	3	
Evaluation		ASE_CCL	1	1	1	1	1	1	1	
		ASE_ECD	1	1	1	1	1	1	1	
Assurance	Security	ASE_INT	1	1	1	1	1	1	1	
Levels	Target	ASE_OBJ	1	2	2	2	2	2	2	
(EALs)	evaluation	ASE_REQ	1	2	2	2	2	2	2	
(LALS)		ASE_SPD		1	1	1	1	1	1	
		ASE_TSS	1	1	1	1	1	1	1	
		ATE_COV		1	2	2	2	3	3	
	Tests	ATE_DPT			1	2	3	3	4	
	Tests	ATE_FUN		1	1	1	1	2	2	
		ATE_IND	1	2	2	2	2	2	3	
. www.ct.siemens.com	Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5	

SIEMENS

David von Oheimb, 2008

CC: Evaluation Assurance Level 2

Development ADV_ARC.1 Security architecture description

ADV_FSP.2 Security-enforcing functional specification

ADV_TDS.1 Basic design

Guidance documents AGD OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

Life-cycle support ALC CMC.2 Use of a CM system

ALC_CMS.2 Parts of the TOE CM coverage

ALC_DEL.1 Delivery procedures

Security Target Eval. ASE_XXX (6 families of components)

Tests ATE_COV.1 Evidence of coverage

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample

Vulnerability analysis AVA_VAN.2 Vulnerability analysis

CC: Evaluation Assurance Level 4

Development ADV_FSP.4 **Complete** functional specification

ADV_IMP.1 Implementation representation of the TSF

ADV_TDS.3 Basic modular design

Guidance documents

Life-cycle support ALC_CMC.4 Production support, acceptance

procedures and automation

ALC_CMS.4 Problem tracking CM coverage

ALC_DVS.1 Identification of security measures

ALC_LCD.1 Developer defined life-cycle model

ALC_TAT.1 Well-defined development tools

Security Target Eval.

Tests ATE COV.2 Analysis of coverage

ATE_DPT.2 Testing: security enforcing modules

Vulnerability analysis AVA_VAN.3 Focused vulnerability analysis

CC: Evaluation Assurance Level 6

Development ADV_FSP.**5** Complete semi-formal functional spec.

with additional error information

ADV_IMP.**2 Implementation** of the TSF

ADV_INT.3 Minimally complex internals

ADV_SPM.1 Formal TOE security policy model

ADV_TDS.5 Complete semiformal modular design

Guidance documents

Life-cycle support ALC CMC.5 Advanced support

ALC_CMS.5 Development tools CM coverage

ALC_DVS.2 Sufficiency of security measures

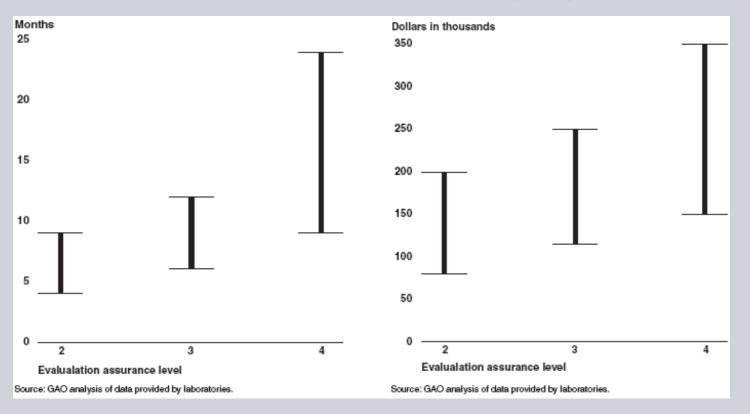
ALC_TAT.3 Compliance with implementation standards

- all parts

Security Target Eval.

Tests ATE_COV.3 Rigorous analysis of coverage

ATE_DPT.3 Testing: modular design


ATE_FUN.2 Ordered functional testing

Vulnerability analysis AVA_VAN.5 Advanced methodical vulnerability analysis

CC: Factors determining the evaluation effort

- Definition of TOE vs. TOE environment
- Definition of Treats and Security Objectives for the TOE
- Definition of Security Functional Requirements (SFRs)
- Selection of Evaluation Assurance Level (EAL)

SIEMENS

Selection of Evaluation Assurance Level (EAL) for AADS

	Flight safety	Airline business
Threat Level assume sophisticated adversary with moderate resources who is willing to take XXX risk	T5: XXX = significant e.g. intl. terrorists	T4 : XXX = little e.g. organized crime, sophisticated hackers,
Information Value	V5: YYY=	intl. corporations V4: YYY = serious
violation of the protection policy would cause YYY damage to the security, safety, financial	exceptionally grave Risk: loss of lives	Risk: airplanes out of service, or damage
posture, or infrastructure of the organization Evaluation Assurance Level	EAL 6: semiformally	airline reputation EAL 4: methodically
for the given Treat Level and Information Value	verified design and tested	designed, tested, and reviewed

Evaluating the whole AADS at EAL 6 would be extremely costly.

Currently available Public Key Infrastructure (PKI) certified only at EAL 4.

Two-level approach: evaluate only LSAP integrity & authenticity at EAL6.

Hybrid security assessment

- Highest CC evaluation assurance levels (EAL 6-7) require formal analysis
- SDS usually are complex distributed systems with many components

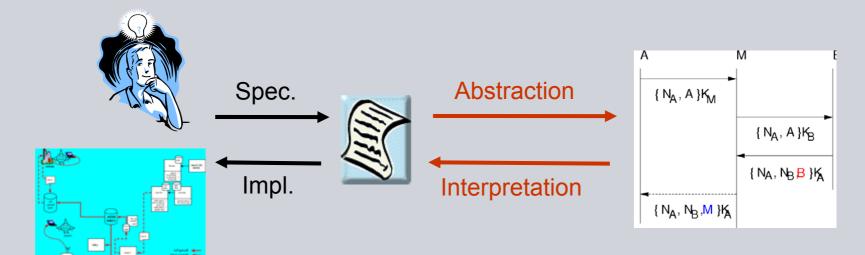
General problems:

- •Highly critical system, but (complete) formal analysis too costly
- •CC offer only limited support ("CAP") for modular system evaluation

Pragmantic approach:

- Define confined security kernel with generic component: SSV
- Software Signer Verifier (SSV) handles digital signatures at each node
- Evaluate SSV according to Common Criteria EAL4 (non-formal)
- Analyze the interaction of SSVs in a formal way (→ crypto protocol)

Overview


- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

Formal Security Analysis: Approach and Benefits

Mission: security analysis with maximal precision

Approach: formal modeling and verification

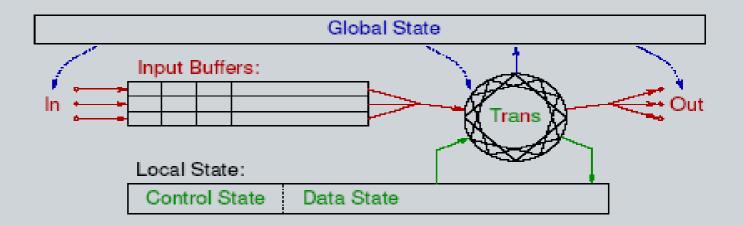
Improving the quality of the system specification

Checking for the existence of security loopholes

High-Level Protocol Spec. Language Model checkers (AVISPA tools)

Interacting State Machines
Interactive theorem prover (Isabelle)

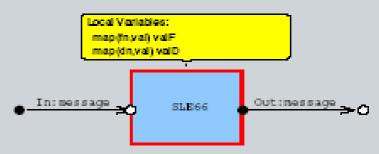
SIEMENS


Security Models

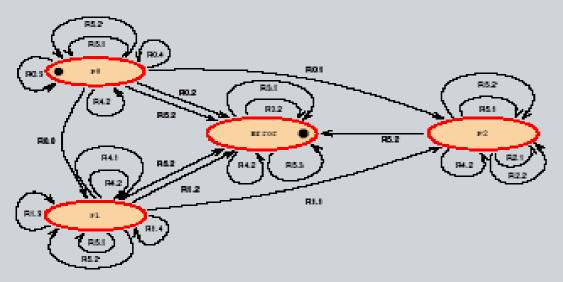
- A security policy defines what is allowed (actions, data flow, ...)
 typically by a relationship between subjects and objects.
- A security model is a (+/- formal) description of a policy and enforcing mechanisms, usually in terms of system states or state sequences (traces).
- Security verification proves that mechanisms enforce policy.
- Models focus on specific characteristics of the reality (policies).
- Types of formal security models
 - Automata models
 - Access Control models
 - Information Flow models
 - Cryptoprotocol models

Interacting State Machines (ISMs)

Automata with (nondeterministic) state transitions + buffered I/O, simultaneously on multiple connections.



Transitions definable in executable and/or axiomatic style. An ISM system may have changing global state. Applicable to a large variety of reactive systems. By now, not much verification support (theory, tools).



Model of Infineon SLE 66 Smart Card Processor

System Structure Diagram:

State Transition Diagram (abstracted):

First higher-level (EAL5) certification for a smart card processor!

RBAC of Complex Information System

Is the security design (with emergency access etc.) sound?

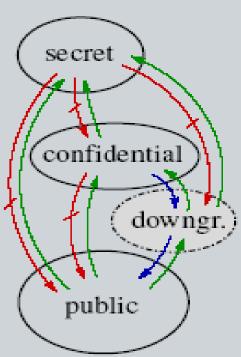
Privileges: roles ⊆ user × role subroles ⊂ role × role

 $subroles \subseteq role \times role$ $privs \subseteq role \times privilege$

Permissions:

```
groups \subseteq user \times group
subgroups \subseteq group \times group
gperms \subseteq group \times permission
uperms \subseteq user \times permission
user = group = group = group = permission
(u, p) \in (groups \circ subgroups^* \circ gperms(e)) \cup uperms(e)
```

"nagging questions" → clarifications improving specification quality.


Open issue: relation between model and implementation (→ testing).

Information Flow Models

- Identify knowledge/information domains
- Specify allowed flow between domains
- Check the observations that can be made about state and/or actions
- Consider also indirect and partial flow
- Classical model:
 Noninterference (Goguen & Meseguer)
- Many variants: Non-deducability, Restrictiveness, Non-leakage, ...

Very strong, but rarely used in practice In progress: connection with ISMs

Language-based Information Flow Security

Policy: no assignments of high-values to low-variables, enforced by type system

Semantically: take (x, y) as elements of the state space with high-level data (on left) and low-level data (on right).

Step function $S(x,y) = (S_H(x,y), S_L(x,y))$ does not leak information from high to low if $S_L(x_1,y) = S_L(x_2,y)$ (functional independence).

Observational equivalence $(x, y) \stackrel{L}{\sim} (x', y') :\longleftrightarrow y = y'$ allows re-formulation:

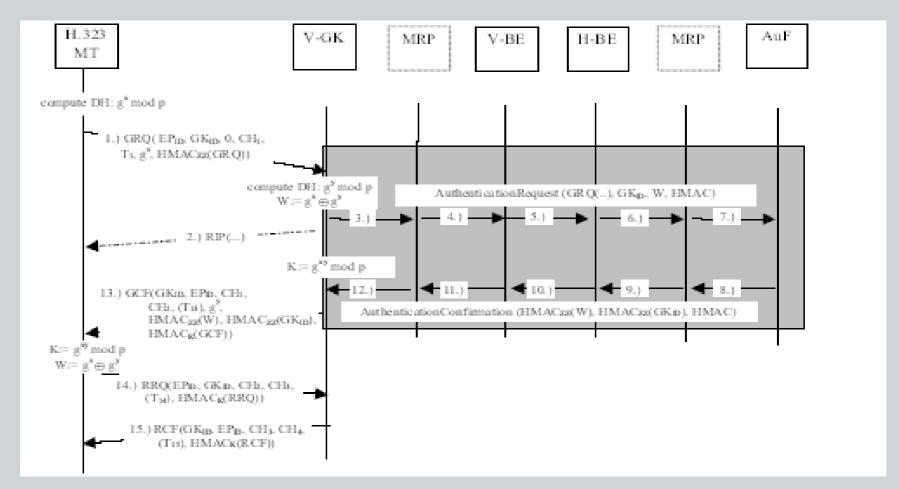
$$s \stackrel{L}{\sim} t \longrightarrow S(s) \stackrel{L}{\sim} S(t)$$
 (preservation of $\stackrel{L}{\sim}$)

Generalization to action sequences α and arbitrary policies \rightsquigarrow

SIEMENS

Cryptoprotocol models

Describe message exchange between processes or principals



- Take cryptographic operations as perfect primitives
- Describe system with specialized modeling languages
- State secrecy, authentication, . . . goals
- Verify (mostly) automatically using model-checkers

EU project AVISPA, ...

H.530 Mobile Roaming Authentication

Two vulnerabilities found and corrected. Solution standardized.

Shaping a Formal Model

Formality Level: should be adequate:

- the more formal, the more precise,
- but requires deeper mastering of formal methods

Choice of Formalism: dependent on ...

- application domain, modeler's experience, tool availability, ...
- formalism should be simple, expressive, flexible, mature

Abstraction Level: should be ...

- high enough to achieve clarity and limit the effort
- low enough not to loose important detail refinement allows for both high-level and detailed description

Development Phases and the Benefits of Formal Analysis

Requirements analysis:

understanding the security issues

- abstraction: concentration on essentials, to keep overview
- genericity: standardized patterns simplify the analysis

Design, documentation:

quality of specifications

enforces preciseness and completeness

Implementation:

effectiveness of security functionality

formal model as precise reference for testing and verification

Overview

- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

Formal modeling: Alice-Bob notation

```
SUP - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP}_KDIS -> DIS
DIS - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
             .{h(Asset).OP }_inv(KDIS).CertDIS}_KOP -> OP
    - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
             .{h(Asset).OP }_inv(KDIS).CertDIS
             .{h(Asset).TD }_inv(KOP ).CertOP }_KTD
                                                        -> TD
A - M -> B message M sent from A to B
Asset
             a software item including its identity
             the hash value (i.e. crypto checksum) of content M
h(M)
             the concatenated contents of M and N
M.N
{M}_inv(K) content M digitally signed with private key K
\{M\}_K
             content M encrypted with public key K
```


Formal modeling: SDS protocol structure

```
SUP - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP}_KDIS -> DIS
DIS - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
             .{h(Asset).OP }_inv(KDIS).CertDIS}_KOP -> OP
    - {Asset.{h(Asset).DIS}_inv(KSUP).CertSUP
             .{h(Asset).OP }_inv(KDIS).CertDIS
             .{h(Asset).TD } inv(KOP ).CertOP }_KTD
                                                        -> TD
SUP: software supplier
                         with private key inv(KSUP)
DIS: software distributor
                         with private key inv(KDIS)
OP: target operator
                         with private key inv(KOP)
TD: target device
                         with private key inv(KTD)
```

Signatures comprise hash value of asset and identity of intended receiver Signatures are applied in parallel (rather than nested or discarded)

Formal modeling: SDS approvals and certificates

- Approval information partially modelled: operator determines target
- Certificate of a node relates its identity with its public key,
 e.g. certificate of supplier SUP: Certsup = {SUP.KSUP}_inv(KCA)
- Certificate authority (CA) with private key inv(KCA)
- Certificates are self-signed or signed by CA
- Locally stored sets of public keys of trusted SSVs and CAs

Overview

- IT Security at Siemens CT
- Software Distribution Systems
- Common Criteria certification
- Formal Security Analysis
- Alice-Bob protocol model
- Validation with AVISPA Tool
- Conclusion

Verification goals

Show asset authenticity & integrity (end-to-end) and confidentiality:

- assets accepted by target have indeed been sent by the supplier
- assets accepted by target have not been modified during transport
- assets remain secret among the SSV instances

Proved asset authenticity & integrity also hop-by-hop

Correct destination covered:

Name of the intended receiver in signed part, checked by target.
 Signature of the operator acts as installation approval statement

Correct version not modelled:

Integrity of version info, checks delegated to SSV local environment

Formal Verification

- Alice-Bob notation not detailed and precise enough
- Use the specification language of the AVISPA Tool: HLPSL
- Software Signer Verifier (SSV) as parameterized role (node class)
- SDS as communication protocol linking different SSV instances
- Multiple protocol sessions describing individual SW transports
- Modelcheckers at their complexity limits, due to
 - parallel signatures, only the latest one being checked
 - multiple instances of central nodes (e.g. manufacturer)
 - **.**..?

Overview

- IT Security at Siemens CT
- Software Distribution Systems
- Hybrid security assessment
- Alice-Bob protocol model
- Formal Security Analysis
- Validation with AVISPA Tool
- Conclusion

Conclusion (1)

- Challenges for AADS development
 - pioneering system design and architecture
 - complex, heterogeneous, distributed system
 - security is critical for both safety and business
- Common Criteria offer adequate methodology for assessment
- Systematic approach, in particular formal analysis, enhances
 - understanding of the security issues
 - quality of specifications and documentation
 - confidence (of Boeing, customers, FAA, etc.) in the security solutions

Conclusion (2)

- Experience with SDS evaluation
 - Common Criteria most widely accepted methodology
 - Problem of compositional security evaluation not solved
 - Use formal analysis where cost/benefit ratio is best
 - Highly precise design and documentation: assumptions, requirements
 - Shape system architecture to support security evaluation
- Future steps
 - Key management aspects:
 Public Key Infrastructure (PKI) components
 - Configuration management
 with installation instructions and reports