53

4R

Bundesamt fiir Sicherheit in der Informationstechnik

Guideline for the Development and Evaluation
of formal security policy models
In the scope of ITSEC and Common Criteria

Version 1.1
17th December 2004

Authors:
Heiko Mantel
i Deutsches
el Forschungszentrum Werner Stephan
1 fiir Kiinstliche Markus Ullmann
. | Intelligenz GmbH

Roland Vogt

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Prepared by
Deutsches Forschungzentrum fir KinstlicheContact:

Intelligenz (DFKI GmbH) Roland Vogt

Stuhlsatzenhausweg 3 phone: +49-681-302-4131

66123 Saarbriicken email: roland.vogt@dfki.de

GERMANY

By order of

Bundesamt fur Sicherheit in der Contact:

Informationstechnik (BSI) Markus Ullmann

Postfach 20 03 63 Ref. Vi4

53133 Bonn phone: +49-228-9582-268
email: ullmann@bsi.bund.de

GERMANY

2/117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Contents

1 Summary 6
2 Introduction 8
21 Goal 9
2.2 Structure of the Document 9
3 Requirements for Formal Models of Security Policy 11
3.1 Requirementsof ITSEC. 11
3.2 Interpretationof ITSECJIL 16
3.3 Requirements of Common Criteria 18
3.3.1 Teil 2: Funktionale Sicherheitsanforderungen /
Part 2: Security functional requirements 18
3.3.2 Teil 3: Anforderungen an die Vertrauenswurdigkeit /
Part 3: Security assurance requirements 19
3.4 Determination of the catalog of requirements 25
3.4.1 Terminology 25
3.4.2 Specification 26
3.4.3 Interpretation 27
3.4.4 \erification 29
4 Basic Concepts of Formal Methods 31
41 FormalMethods. 32
4.2 MethodsandTools 34
4.3 \rification Techniques 36
4.4 LOQIC e 38
44,1 BasicNotions. 38
4.4.2 Proof Techniques 40
45 Consistency 42
5 Preparation of Formal Security Models 45
5.1 Background of the Modeling Example 46

17.12.2004 3/117

Devlopment and Evaluation of Formal Security Policy Models

BS
2

Version: 1.1 in the scope of ITSEC and Common Criteria Guideline
5.2 Determination of the Degree of Abstraction 46
5.3 Security Properties 48
5.4 Security Features e 53
5.5 Proofs of Properties and Consistency 55
55.1 SecurityProofs 56
5.5.2 Consistency Proof 57
6 Known Formal Security Models 67
6.1 Noninterference 68
6.1.1 Definition of the Formal Model 69
6.1.2 Formalization of a Security Policy 72
6.1.3 Assumptions about the Operation Environment 73
6.1.4 Known Limitations of the Security Model 73
6.2 Securityby AccessControl 75
6.2.1 BelllLaPadula 77
6.22 Biba. 82
6.3 Relationship betweenthe Models 86
6.3.1 Correspondence between Bell/lLaPadulaand Biba 87
6.3.2 Access Control and Noninterference 87
6.4 Usability of ClassicalModels 88
6.5 Instantiation of Classical Models 89
7 Evaluation of Formal Security Policy Models 90
7.1 Security Policy vs. Security Policy Model 90
7.2 Security Propertiesvs. Features. 91
7.3 Security Policy Model vs. Security Functions 92
8 How IT Manufacturers Benefit from Formal Security Models 93
8.1 Development Methodology 94
8.2 Semi-formal Description Techniques 95
8.3 FormalMethods 96
A Evaluation of security policy modeling (ADV_SPM) 98
Al Objectives 98
A.2 Applicationnotes L L 98
A3 Input. 99
A.4 EvaluatorActions 99
A.4.1 Action ADV_SPM.[123].1E 100
B Correspondence with CEM 106
C Best Practices 107

4/117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Bibliography 111

17.12.2004 5/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Chapter 1

Summary

As to the preparation and verification of formal specifications according to valid
criteria (ITSEC, CC), many questions remain open after having read the relevant
passages. These guidelines are supposed to help evaluators and developers to
reach a deeper understanding on this topic in the context of these criteria, and
that in particular for the preparation and verification of so-calednal Models

of Security PolicieFMSP). Moreover, it is supposed to help discovering the
value of formal security models added to the mere conformance with the criteria
requirements.

To this end, first the various requirements that are defined on different parts
of the criteria — be it ITSEC or CC — are quoted. These then are related to the
characteristics of formal methods, known and published formal security models
and the experiences that have been made with the development and the verification
of formal models. In particular, this will show that the models by Bell/La Padula
and Biba that are mentioned in the criteria merely define a generic framework with
which various security policies for access control can be defined.

Special emphasis will be placed on the fact that formal security modetoare
isolated specifications but are closely and directly related to other evaluation doc-
uments as, for example, functional specifications (c. f. CC, family ADV_FSP).

In as much as it serves comprehensibility, the requirements for the components
of formal safety models are not only made more precise but are also illustrated
with the help of small excerpts taken from an existing formal model of Integrated
Circuit Cards with signature functionality according to DINV 66291-1.

Past experiences show that a formal modelling of the security policies — given
as a formal security model — may lead to an increase of confidence in the security
of the product that obeys these security policies. This is so because it always
happened that vulnarabilities and errors were uncovered already on the basis of
informal security policies.

Up to now, these results were dearly purchased simply because the preparation

6/117 17.12.2004

. n
Devlopment and Evaluation of Formal Security Policy Models 1
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

of formal security models is still understood as an isolated evaluation task that is
to be carried out towards the end of the product development. However, if it were
considered as a part of the system development itself, many errors and security
vulnarabilities within products could be omitted at an early stage and would not
have to be eliminated ex post with that much of an effort.

17.12.2004 71117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Chapter 2

Introduction

The Information Technology Security Evaluation Criteria (ITSH&])define cri-

teria for the evaluation of IT-systems and products according to the evaluation lev-
els E1 to E6. The higher the evaluation level the more demanding are the security
requirements that have to be fulfilled. In a similar fashion, @mnmon Crite-

ria for Information Technology Security Evaluation (C[C) define the evaluation
levels EALL to EAL7 (with EAL7 being the highest security level). IT security
comprises confidentiality, integrity, and availability. For the evaluation levels E4
to E6 (ITSEC), respectively EALS5 to EAL7 (CC), it is required that the develop-
ment of the target of evaluation (TOE) is supported by a formal security model.
A formal security model is a model of the aspired TOE security policy that is
prepared on a formal notational basis. Such a notation has to rely on mathemat-
ical concepts with which syntax and semantics of the language but also rules of
inference are defined.

In the course of an evaluation already published, formal security models may
be used as a whole or in parts provided they are appropriate for the TOE. If none of
the common security models is appropriate, such a security model has to be newly
established. As examples of published security models, the ITSEC mentions the
Bell/La Padula model, the model of Clark and Wilson, the Brewer-Nash model,
the Eizenberg model, and the Landwehr model (c. f. [4, Par. 2.83]). In the CC, the
Bell/La Padula model, the Biba model and models for non-interference by Goguen
and Meseguer are mentioned (c. f. [1, Part 2, Par. 786]).

For the TOE and the chosen security model it has to be shown that the TOE’s
security functions are conformant with both the modelled security policy and with
the TOE’s functional requirements. A formal security model therefore constitutes
a link between the requirements specification and the design specification. It is
thus of vital importance for the quality of the TOE’s security guarantees.

8/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

2.1 Goal

This document is supposed to serve as a guideline for the preparation and the
evaluation of security models according to ITSEC and CC, respectively. This
guideline supports both the sponsor of an evaluation and the evaluator. The former
to fulfil the criteria that are required for a formal security model and the latter for
the evaluation of the TOE according to these criteria.

The guideline includes a survey of established security models that proved to
be of value or seem appropriate for an evaluation according to ITSEC and CC,
respectively. For each of these models it is described which security policy lies
underneath, how the security policy can be modelled formally, and under which
assumptions this security model can be applied.

Whether or not an existing formal security model can be accessed, is a matter
of the security objectives that have to be achieved as well as of the security policy
of the product that is to be evaluated. The guideline is supposed to support the de-
cision whether a known model can be applied — be it directly or slightly modified
— or whether a new one has to be established.

2.2 Structure of the Document

This guideline is structured along the following five questions that arise during the
development and the evaluation of formal security models in practice.

e How are we to interpret the requirements of the criteria with respect to for-
mal security models in the context of a development process?

e Which concepts, techniques, and tools for formal methods are needed for
the preparation and the evaluation of formal security models?

e Which security principles and characteristics matter and how can they be
modelled formally?

e Are there any general adaptable formal security models that can be ac-
cessed?

e How does an evaluation according to ITSEC and CC resp., take course?

In the beginning of chapter 3, all requirements on security models from IT-
SEC and CC are collected. After that, a requirement catalogue is determined that
measures up to both the criteria as well as the state of the art in the area of formal
methods.

17.12.2004 9/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

The base concepts of formal methods are summarized in chapter 4. This is
supposed to give some insight into the foundations and the technical possibilities
when utilizing formal methods in the area of IT security. Evidently, it is not meant
— neither in breadth nor in depth — as a overall comprehensive introduction into
formal methods.

In chapter 5 the abstractly outlined notions and requirements are illustrated
by a concrete example, namely a smart-card application that generates digital sig-
natures. Starting from an informal security policy assistance is given in various
respects. For instance how to determine and to formalize security properties and
characteristics. But also how to choose an adequate abstraction level and how
to make assumptions about the application environment as precise as possible.
These remarks will be supplemented with excerpts taken from the formal security
model mentioned above that has been specified and verified with the help of the
Verification Support Environment (VSBJSE is a tool to prepare formal security
models. It is authorized by the German Information Security Agency (BSI).

Some generally applicable security models taken from the class of models
based on non-interference are described in 6. In detail non-interference (sec-
tion 6.1), the model of Bell/La Padula (section 6.2.1) and the model of Biba (sec-
tion 6.2.2) are addressed. This class of security models can be applied to the mod-
elling of both confidentiality and integrity. In sections 6.4 and 6.5, the usability
of these models in a concrete application is addressed. Moreover, it is explained
what it means for a system to instantiate the models.

In chapter 7, hints and methods for the evaluation of formal security models
according to the ITSEC and CC requirements are given. With this, developers as
well as evaluators should get an orientation which criteria are crucial for the qual-
ity of the formal security models and with which methods potential deficiencies
can be uncovered.

In chapter 8, it is summarized why the application of formal methods serves
the following two purposes: A vital enhancement of the development process and
a noticeable increase of quality. The evaluation afterwards (merely) serves the
purpose to check whether these techniques have been applied appropriately. In
addition, the issue of differentiating between formal and semi-formal methods is
addressed.

10/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Chapter 3

Requirements for Formal Models of
Security Policy

In the context of formal models of security policy the Common Criteria [1, 2] and
the ITSEC [4, 5] formulate concrete requirements. These are complemented by
the Joint Interpretation Library [8] in the case of the ITSEC.

For the purpose of a comparative presentation the relevant sections of the cri-
teria are cited in this chapter first. Based on this comparison appropriate require-
ments are determined that permit an effective use of formal models of security
policy for evaluations according to ITSEC as well as Common Criteria.

3.1 Requirements of ITSEC

In the following sections the requirements of ITSEC on formal models of security
policy are reproduced. The paragraph numbers are indicated in the page margins.
Any requirements are cited in english as well as german language. In cases of
doubt the english version is vatid

From [4, 5, Chapter 2] the general explanations on formal specifications and
formal models of security policy are cited first. The concrete requirements on
formal models of security policy resp. on the related formal specifications of the
security enforcing functions and the architectural design are taken from the text
of the evaluation level E6 (cf. [4, 5, Level E6, Phase 1 and Phase 2]). Differ-
ences w. t. the levels E4 and E5 are identified through underliringbold face
printing.

Normative application note cited from [9, AIS 2, Version 5 dated 21.08.1998]: ,Die ITSEC
entstanden im Verlauf eines Harmonisierungsprozesses auf europaischer Ebene. Die abgestimmte
und [...] gultige Ausgabe ist die englischsprachige Ausgabe der ITSEC."

17.12.2004 117117

BS

2.13

2.76

2.77

Devlopment and Evaluation of Formal Security Policy Models

Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

System-Sicherheitspolitik System Security Policy

Die IT-Sicherheitsmalinahmen einer System-Si- The IT security measures of a System Se-

cherheitspolitik kénnen vom Rest der System-
Sicherheitspolitik getrennt werden und in ei-
nem besonderen Dokument festgelegt werden
der sogenannteffechnischen Sicherheitspoli-
tik.“ Sie ist die Menge der Gesetze, Regeln und
Praktiken, die die Verarbeitung von sensitiven In-
formationen und die Nutzung der Betriebsmittel
durch die Hard- und Software eines IT-Systems
regelt.

Formale Spezifikation

Eine formale Darstellungsform einer Spezifika-
tion ist in einer formalen Notation geschrieben,

curity Policy may be separated from the re-
mainder of the System Security Policy, and
: defined in a separate documentTechni-
cal Security Policy. This is the set of laws,
rules and practices regulating the process-
ing of sensitive information and the use of
resources by the hardware and software of
an IT system.

Formal Specification

A formal style of specification is writ-
ten in a formal notation based upon well-

die auf wohl begriindeten mathematischen Kon- established mathematical concepts. The
zepten aufbaut. Diese Konzepte werden dazu be-concepts are used to define the syntax and
nutzt, um die Syntax und die Semantik der No- semantics of the notation, and the proof
tation und die Prifregeln zu definieren, die das rules supporting logical reasoning. For-
logische Schliel3en unterstiitzen. Formale Spezi- mal specifications must be capable of being
fikationen missen aus einer Menge von Axio- shown to be derivable from a set of stated
men abgeleitet werden konnen. Die Glltigkeit axioms, and must be capable of showing
von Haupteigenschaften, wie z. B. die Erzeugung the validity of key properties such as the
einer gultigen Ausgabe fur alle Eingaben, muf3 delivery of a valid output for all possible
gezeigt werden kénnen. Wenn Spezifikationen inputs. Where hierarchical levels of speci-
hierarchisch aufgebaut sind, mul3 gezeigt werden fication exist, it must be possible to demon-
kdonnen, daf} auf jeder Stufe die Eigenschaften strate that each level maintains the proper-
der vorhergehenden Stufe erhalten bleiben. ties established for the previous level.

Die syntaktischen und semantischen Regeln ei- The syntactic and semantic rules support-
ner formalen Notation, die in Sicherheitsvorga- ing a formal notation used in a security tar-
ben verwendet werden, missen festlegen, wie get shall define how to recognise constructs
Konstrukte eindeutig zu erkennen sind und ih- unambiguously and determine their mean-
re Bedeutung bestimmt werden kann. Wenn Be- ing. Where proof rules are used to sup-
weisregeln logische Schllisse unterstiitzen, muR3 port logical reasoning, there shall be evi-
offensichtlich sein, daf3 es nicht mdglich ist, Wi- dence that it is impossible to derive con-
derspriiche abzuleiten. Alle Regeln der Notation tradictions. All rules supporting the nota-
mussen definiert werden oder es muf3 darauf hin- tion shall be defined or referenced. All con-
gewiesen werden, wo sie beschrieben sind. Al- structs used in a formal specification shall
le Konstrukte, die in einer formalen Spezifikati- be completely described by the supporting
on benutzt werden, missen vollstéandig durch die rules. The formal notation shall allow the
Regeln beschrieben sein. Die formale Notation specification of both the effect of a func-
muf3 sowohl die Beschreibung der Wirkung einer tion and all exceptional or error conditions
Funktion als auch aller damit zusammenh&ngen- associated with that function.

den Ausnahmen und Fehler erlauben.

12 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models

Guideline

in the scope of ITSEC and Common Criteria

Version: 1.1

Beispiele fiir formale Schreibweisen sind VDM,
beschrieben in [SSVDM], Z, beschrieben in
[ZRM], die Spezifikationssprache RAISE, be-
schrieben in [RSL], Ina Jo, beschrieben in
[IIRM], die Spezifikationssprache Gipsy, be-
schrieben in [GIPSY] und die OSI-Sprache zur
Spezifikation von Protokollen [LOTOS]. Die
Nutzung von Konstrukten der Pradikaten- (oder
anderer) Logik und der Mengenlehre als formale
Schreibweise ist erlaubt, wenn die Konventionen
(Regeln) dokumentiert sind oder ein Verweis auf
die Beschreibung (wie bereits oben erwahnt) an-
gegeben ist.

Formale Sicherheitsmodelle

Bei den Evaluationsstufen ab E4 muf? dem EVG
ein Modell einer Sicherheitspolitik (Sicherheits-
modell) zugrunde liegen, d.h. es mul3 eine ab-
strakte Beschreibung der wichtigen Sicherheits-
prinzipien vorhanden sein, denen der EVG ge-
nigt. Es mulR in einer formalen Darstellungs-
form vorliegen, als eiformales Sicherheitsmo-
dell. Auf ein geeignetes verdffentlichtes Modell
kann ganz oder teilweise Bezug genommen wer-
den oder es muf3 ein Modell als Teil der Sicher-

Example formal notations are VDM, de-
scribed in [SSVDM], Z, described in

[ZRM], the RAISE Specification Lan-

guage, described in [RSL], Ina Jo, de-
scribed in [IJRM], the Gypsy Specification
Language, described in [GYPSY], and the
ISO protocol specification language [LO-
TOS]. The use of constructs from predi-
cate (or other) logic and set theory as a
formal notation is acceptable, provided that
the conventions (supporting rules) are doc-
umented or referenced (as set out above).

Formal Models of Security Policy

At Evaluation levels E4 and above, a TOE
must implement an underlying model of se-
curity policy, i. e. there must be an abstract
statement of the important principles of Se-
curity that the TOE will enforce. This shall
be expressed in a formal style, adaa-
mal model of security policy. All or part

of a suitable published model can be refer-
enced, otherwise a model shall be provided
as part of the security target. Any of the

heitsvorgaben vorhanden sein. Jede der oben be-formal specification styles identified above

schriebenen Darstellungsformen einer formalen
Spezifikation kann benutzt werden, um solch ein
Modell zu definieren.

Das formale Modell mufl3 nicht alle sicherheits-

spezifischen Funktionen enthalten, die in den Si-

may be used to define such a model.

The formal model need not cover all the se-
curity enforcing functions specified within

cherheitsvorgaben angegeben sind. Jedoch mufthe security target. However, an informal
eine informelle Interpretation des Modells mit interpretation of the model in terms of the
Bezug auf die Aussagen in den Sicherheitsvor- Security target shall be provided, and shall
gaben vorhanden sein. Es mul3 gezeigt werden,show that the security target implements
dal die Sicherheitsvorgaben die zugrunde liegen- the underlying security policy and contains
de Sicherheitspolitik umsetzen und keine Funk- no functions that conflict with that underly-

tionen enthalten, die mit der zugrunde liegenden ing policy.

Politik im Widerspruch stehen.

17.12.2004 13/117

2.78

2.81

2.82

BS
N

2.83

E[456].2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Beispiele fur verotffentlichte formale Sicherheits- Examples of published formal models of

modelle sind: security policy are:

a) Das Bell-La-Padula-Modell [BLP] — ein a) The Bell-La Padula model [BLP]
Modell fir Anforderungen an die Zu- — modelling access control re-
griffskontrolle, die fur eine nationale Si- quirements typical of a national se-
cherheitspolitik zur Vertraulichkeit von curity policy for confidentiality.
Daten typisch sind. b) The Clark and Wilson model

b) Das Clark und Wilson Modell [CWM] — [CWM] — modelling the in-
ein Modell fur Integritdtsanforderungen tegrity requirements of commercial
an kommerzielle Transaktionssysteme. transaction processing systems.

c) Das Brewer-Nash-Modell [BNM] — ein c) The Brewer-Nash model [BNM] —
Modell fir Anforderungen an die Zu- modelling access control require-
griffskontrolle im Hinblick auf Kunden- ments for client confidentiality, typ-
vertraulichkeit; typisch fur Finanzinstitu- ical of a financial services institu-
tionen. tion.

d) Das Eizenberg-Modell [EZBM] — ein d) The Eizenberg model [EZBM] —
Modell fur Zugriffsrechte, die sich mit modelling access control rights that
der Zeit &ndern. vary with time.

e) Das Landwehr-Modell [LWM] — ein e) The Landwehr model [LWM] —
Modell fir Anforderungen an die Daten- modelling the data exchange re-
Ubertragung eines Nachrichtenverarbei- quirements of a message processing
tungsnetzes. network.

Konstruktion — Der Entwick- Construction — The Devel-

IungsprozeB opment Process

Phase 1 — Anforderungen Phase 1 — Requirements

Anforderungen an Inhalt und Form Requirements for content and
presentation

[...] Ein formales Sicherheitsmodell oder [...] A formal model of security pol-
ein Verweis auf ein solches muf3 zur Verfl- icy shall be provided or referenced to
gung gestellt werden. Darin ist die zugrun- define the underlying security policy to
deliegende Sicherheitspolitik zu definieren, be enforced by the TOE. An informal
die vom EVG durchgesetzt werden muf3. Ei- interpretation of this model in terms of
ne informelle Interpretation dieses Modells the security target shall be provided.
in Bezug zu den Sicherheitsvorgaben mufd The security enforcing functions within
zur Verfiigung gestellt werden. Die in den Si- the security target shall be specified us-
cherheitsvorgaben aufgefiihrten sicherheits- ing both an informal and semiformél
spezifischen Funktionen missen sowohl in formal style as categorised in [4, Chap-
informeller als auch in_semiformalérfor- ter 2].

maler Notation (siehe [5, Kapitel 2]) spezi-

fiziert werden.

14 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Anforderungen an Nachweise Requirements for evidence

[...] Dieinformelle Interpretation des for- [...] The informal interpretation of
malen Sicherheitsmodells mulR beschreiben the formal security policy model shall
erklaren, auf welche Weise seine zugrunde- describé explain how the security tar-
liegende Sicherheitspolitik durch die Sicher- get satisfies the underlying security pol-
heitsvorgaben erflllt wird. icy.

Aufgaben des Evaluators Evaluator Actions

[...] Es ist zu uberprifen, ob es Sicher- [...] Check that there are no security
heitsmal3hahmen in den Sicherheitsvorgabenfeatures in the security target that con-
gibt, die zu Konflikten mit der dem Sicher- flict with the underlying security pol-
heitsmodell zugrundeliegenden Sicherheits- icy.

politik fihren.

Phase 2 — Architekturentwurf Phase 2 — Architectural Design
Anforderungen an Inhalt und Form Requirements for content and
presentation

Eine semiformale formale Notation mu? A semiformal/ formal notation shall
verwendet werden, um einen semiformalen be used in the architectural design to
/ formalen Architekturentwurf zu erstellen. produce a semiformafformal descrip-
[...] tion. [...]

Anforderungen an Nachweise Requirements for evidence

[...] Sie [Die Beschreibung der Archi- [...] It[The description of the ar-
tektur] muf3 durch Anwendung einer chitecture] shall explain, using a

Mischung von formaler und informeller combination of formal and informal

Technik erklaren, wie sie mit dem forma- techniques, how it is consistent with

len Sicherheitsmodell Gbereinstimmt. the formal security policy model of
the underlying security policy.

Aufgaben des Evaluators Evaluator Actions

[...] Esistzu uberprifen, ob die forma- [...] Check that formal arguments

len Argumente gultig sind. are valid.

17.12.2004 15/117

E[456].3

E[456].4

E[456].5

E[456].6

E[456].7

BS
0

273
274

275

278

279

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

3.2 Interpretation of ITSEC JIL

The ITSEC Joint Interpretation Library (JIL) contains internationally agreed nor-
mative interpretations w. r. t. the requirements of ITSEC pertaining to formal meth-
ods (cf. [8, Chapter 19]). The extractions of this chapter relevant to formal models
of secrity policy are reproduced in the following sections. The paragraph numbers
are indicated in the page margins. The citations are given in english language only,
since an official german translation does not exist.

Background

[4, 2.81-2.83] provides explanations about formal model of security policy and [4, 2.76—
2.78] about formal specification.
[4, 2.78] provides examples of formal notations. Additional notations are CSP, VSE, B.

[L..]

The use of formality as applied to the ITSEC deliverables is described as follows:

e At E4 and above, a formal model of security policy is required with an informal
interpretation of this model in terms of the security target [4,1£En.2 n > 3];
referred to within this topic as FMSP and its informal interpretation;

e at E6, a formal description of the architecture of the TOE shall be provided [4,
E6.1-E6.5]; referred to within this topic as FAD;

e at E6, a formal specification of security enforcing functions is required [4, E6.1,
E6.2]; referred to within this topic as Formal SEFs.

Interpretation

Formal Model of Security Policy (FMSP)

The FMSP’s aim is to enhance the assurance by formally specifying and proving that the
TOE correctly enforces the stated security policy.

As described in ITSEM [6, 6.B.25], the system security policy for a system, or the prod-
uct rationale for a product, should state in the security target the important principles of
security (referred to as “the Security Policy”):

o forasystem, it corresponds to the security objectives defined in the System Security
Policy (SSP) which shall be addressed by a combination of TOE Security Enforcing
Functions and personnel, physical or procedural means associated with the system,
as described in [4, 2.9];

o for a product, it corresponds to the product rationale which gives an equivalence
to the “system security objectives” by identifying the product’s security features
and all environmental assumptions [6, 6.B.25-6.B.28]. In some cases, a product
rationale may specify security objectives.

16 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

At E4 and above, part or all the TOE Security Policy of the system or product, known
in ITSEC as the Underlying Security Policy, shall be expressed in a formal style in the
FMSP.

Formal Architectural Design (FAD)

The FSMP and FAD must be separated by a significant design step. Sufficient design
steps, described in a formal language, may include the step from abstract behaviour de-
scription to a concrete description or flattening a distributed structure into a global struc-
ture with constraints.

Examples of insufficient design steps include the implementation of trivial constraints or
simple data representation changes, such as implementing a set as a sequence.

Proofs

The ITSEC requires evidence in order to satisfy requirements. The following proofs shall
be presented as evidence.

FMSP proofs shall prove evidence for the correctness of the security model. This in-
cludes but is not limited to the internal consistency of the security model, in the sense of
non-existence of contradictions and invariance (i. e. the impossibility of transition from
secure to insecure states) of its properties.

A proof must provide evidence that establishes the validity of the subject being proved.
It shall be accompanied by a justification of why the proof obligation is a correct formal
statement for the subject being proved.

Proofs must be formal and independently checkable. It must be possible for someone
other than the author to check the correctness of the proof. This may be done in one of
four ways:

e Manual proof, checked by a different human reviewer,

e Manual proof, checked by an automated proof checker,

e Computer generated proof, checked by a human reviewer,

e Computer generated proof, checked by an automated proof checker.

Proofs to be checked by a human reviewer must be well structured, give intuitive explana-
tions for proof steps, and make good use of lemmas. Itis often inappropriate to perform all
steps of a proof; however, any steps left out for the reviewer must be obvious and clearly
derivable, in that it must not require creative proof work to generate them. Experience has
shown that such a level of formality is achievable.

17.12.2004 17 /117

280

283

284

286

287

290

291

292

BS

14

15

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

3.3 Requirements of Common Criteria

In the following sections the requirements of Common Ciriteria for formal secu-
rity policy models are reproduced. The paragraph numbers are indicated in the
page margins. Any requirements are cited in english as well as german language.
The english citations are taken from the text of the Common Criteria in the valid
version 2.1 of August 1999 (cf. [1]). The german citations are taken from the
translation of version 2.1 of the Commen Criteria (cf. [2]). Analogously to IT-
SEC, in cases of doubt the original english version is valid.

3.3.1 Teil 2: Funktionale Sicherheitsanforderungen/
Part 2. Security functional requirements

The notion “(TOE) security policy model” is termed within the Common Crite-

ria [1, Part 1, Glossary] as a structured representation of the security policy to
be enforced by the TOE. Therefore it is necessary for the assessment of the re-
qguirements on formal securiy policy models to include the characterisation of the
notion “TOE securiy policy” taken from part 2 of the Common Criteria [1, Teil 2]
and reproduced in the sequel .

Konzeption der funktionalen An- Functional requirements
forderungen paradigm

Die Prufung und Bewertung eines TOE (EVG) TOE evaluation is concerned primarily
befaldt sich in erster Linie damit sicherzustel- with ensuring that a define@OE Secu-
len, daR eine festgelegie/G-Sicherheitspolitik rity Policy (TSP)is enforced over the TOE
(TSP) fur alle EVG-Betriebsmittel durchgesetzt resources. The TSP defines the rules by
wird. Die TSP legt die Regeln fest, nach denen which the TOE governs access to its re-
der TOE (EVG) den Zugriff auf seine Betriebs- sources, and thus all information and ser-
mittel und somit alle durch den TOE (EVG) kon- vices controlled by the TOE.

trollierten Informationen und Dienste steuert.

Die TSP besteht wiederum aus mehrefenk- The TSP is, in turn, made up of multiple
tionalen Sicherheitspolitiken (SFPs)Jede SFP Security Function Policies (SFPs) Each
hat einen Anwendungsbereich der Kontrolle, der SFP has a scope of control, that defines the
die durch die SFP kontrollierten Subjekte, Objek- subjects, objects, and operations controlled
te und Operationen festlegt. Die SFP wird von ei- under the SFP. The SFP is implemented by
ner Sicherheitsfunktion (SF)implementiert, de- a Security Function (SF) whose mecha-
ren Mechanismen die Politik durchsetzen und die nisms enforce the policy and provide nec-
notigen Fahigkeiten bereitstellen. essary capabilities.

18/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models "
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Die Teile eines TOE (EVG), auf die zur Those portions of a TOE that must be relied 16
korrekten Durchsetzung der TSP Verlal3 sein on for the correct enforcement of the TSP
muf3, werden mit dem SammelbegriEVG- are collectively referred to as tHeEOE Se-

Sicherheitsfunktionen (TSFpezeichnet. Zuden curity Functions (TSF). The TSF consists

TSF gehort die gesamte Hardware, Software und of all hardware, software, and firmware of
Firmware eines TOE (EVG), auf die direkt oder a TOE that is either directly or indirectly
indirekt zur Durchsetzung der Sicherheit Verlal3 relied upon for security enforcement.

sein muf3.

3.3.2 Teil 3: Anforderungen an die Vertrauenswurdigkeit /
Part 3: Security assurance requirements

Structurally the Common Criteria differ from the ITSEC in many respects. Specif-
ically the Evaluation Assurance Levels (EALS) are not directly defined but are to
be understood as combinations of individual assurance components that are tied
up to hierarchically ordered packages. The distinguished assucanggonents

are parts of assurantamilieswhich themselves are pooled to assuratiesses

the top level construct for the classification of assurance requirements.

Concrete requirements on (formal) securiy policy models resp. on the corre-
sponding functional specification are formulated in the families ADV_FSP (Func-
tional Specification) and ADV_SPM (Security Policy Model) of the assurance
class ADV (Development) in part 3 of the Common Criteria [1, Part 3]. The ta-
ble shown here presents the reference between the components of both assurance
families and the evaluation assurance levels EAL5 — EAL7.

Assurance

Famliy EALS5 | EAL6 | EALY
ADV_FSP 3 3 4
ADV_SPM 3 3 3

In the following sections the relevant extractions of the ADV class, specifically
of the families ADV_FSP and ADV_SPM, are reproduced. Differences between
the components ADV_FSP.3 and ADV_FSP.4 are identified through underlining
andbold faceprinting.

Further relationships exist to the families ADV_HLD (High-level design),
ADV_LLD (Low-level design) and ADV_RCR (Representation correspondence).
However, requirements from components of these families are not cited here, since
the relation to formal security policy models is indirectly given via the funcional
specification (family ADV_FSP).

17.12.2004 19/117

BS

98

302

309

99

Devlopment and Evaluation of Formal Security Policy Models

Version: 1.1

in the scope of ITSEC and Common Criteria

Guideline

Klasse ADV: Entwicklung

Die Vertrauenswirdigkeitsklasse ADV defi-
niert Anforderungen zur schrittweisen Verfei-
nerung der TSF, angefangen bei der EVG-
Ubersichtsspezifikation in den ST bis zur tat-
sachlichen Implementierung. Jede dieser TSF-
Darstellungen liefert Informationen, die dem
Evaluator helfen festzustellen, ob die funktiona-
len Anforderungen des TOE (EVG) erfullt sind.

Anwendungsbemerkungen

Die EVG-Sicherheitspolitik (TSP) ist die
Menge der Regeln, die bestimmen, wie die
Betriebsmittel innerhalb eines TOE (EVG)
verwaltet, geschutzt und verteilt werden,
ausgedruckt durch die funktionalen EVG-
Sicherheitsanforderungen. Vom Entwickler
wird nicht explizit gefordert, eine TSP be-
reitzustellen, da die TSP in den funktionalen
EVG-Sicherheitsanforderungen mittels einer
Kombination aus funktionalen Sicherheits-
politiken (SFP) und den anderen einzelnen
Anforderungselementen ausgedriickt ist.
Erhebliche Vertrauenswurdigkeit kann dadurch
erreicht werden, dald sichergestellt wird, dald
die TSF Uber jede ihrer Darstellungen verfolgt
werden koénnen, und dal3 das TSP-Modell mit
der funktionalen Spezifikation Ubereinstimmt.
Die Familie ADV_RCR enthalt Anforderungen

Class ADV: Development

Assurance class ADV defines requirements
for the stepwise refinement of the TSF

from the TOE summary specification in

the ST down to the actual implementation.
Each of the resulting TSF representations
provide information to help the evaluator

determine whether the functional require-
ments of the TOE have been met.

Application notes

The TOE security policy (TSP) is the set of
rules that regulate how resources are man-
aged, protected and distributed within a
TOE, expressed by the TOE security func-
tional requirements. The developer is not
explicitly required to provide a TSP, as the
TSP is expressed by the TOE security func-
tional requirements, through a combination
of security function policies (SFPs) and the
other individual requirement elements.

Significant assurance can be gained by en-
suring that the TSF can be traced though
each of its representations, and by ensur-
ing that the TSP model corresponds to the
functional specification. The ADV_RCR
family contains requirements for corre-

fiir entsprechende Ubereinstimmungen zwischen spondence mappings between the various
den verschiedenen TSF-Darstellungen, und die TSF representations, and the ADV_SPM

Familie ADV_SPM enthélt Anforderungen an ei-
ne Ubereinstimmung zwischen dem TSP-Modell
und der funktionalen Spezifikation. [...]

Funktionale Spezifikation (ADV_FSP)

Die funktionale Spezifikation beschreibt die
TSF und muf3 eine vollstandige und getreue

family contains requirements for a cor-
respondence mapping between the TSP
model and the functional specification.

[..]

Functional
(ADV_FSP)

The functional specification describes
the TSF, and must be a complete and

specification

Umsetzung der Sicherheitsanforderungen anaccurate instantiation of the TOE secu-

den TOE (EVG) sein. Die funktionale Spe-
zifikation enth< auch Details zur externen
Schnittstelle zum TOE (EVG). Von Benut-

zern des TOE (EVG) wird erwartet, daf3 sie
mit den TSF Uber diese Schnittstelle intera-
gieren.

rity functional requirements. The func-
tional specification also details the ex-
ternal interface to the TOE. Users of the
TOE are expected to interact with the
TSF through this interface.

20/ 117

17.12.2004

Devlopment and Evaluation of Formal Security Policy Models

- D
Guideline in the scope of ITSEC and Common Criteria Version: 1.1) .

Ziele

Die funktionale Spezifikation ist ei-

ne Beschreibung der fir den Benutzer
sichtbaren TSF-Schnittstelle und des
TSF-Verhaltens auf hoher Ebene. Sie ist
eine Umsetzung der funktionalen EVG-
Sicherheitsanforderungen. Die funktionale
Spezifikation mul3 zeigen, dal’ alle EVG-

Objectives

The functional specification is a high- 314
level description of the user-visible in-
terface and behaviour of the TSF. It
is an instantiation of the TOE secu-
rity functional requirements. The func-
tional specification has to show that
all the TOE security functional require-

Sicherheitsanforderungen angesprochenments are addressed.

sind.
ADV_FSP.[#] Semiformale/ Formale
funktionale Spezifikation

Elemente zu Entwickleraufgaben:

Der Entwickler muf3 eine funktionale Spezi-
fikation bereitstellen.

Elemente zu Inhalt und Form des
Nachweises:

Die funktionale Spezifikation muf3 die TSF
und ihre externen Schnittstellen in einem
semiformalen/ formalen Stil beschreiben,
der, wo angemessen, von einem informellen,
erlauternden Text unterstitzt ist.

Die funktionale Spezifikation muf3 in sich
konsistent sein.

Die funktionale Spezifikation muf3 den
Zweck und die Methode des Gebrauchs al-
ler externen TSF-Schnittstellen beschreiben,
einschlie3lich aller Details samtlicher Wir-
kungen, Ausnahmen und Fehlermeldungen.

Die funktionale Spezifikation muf3 die TSF
vollstandig darstellen.

Die funktionale Spezifikation muf eine Er-
klarung enthalten, da’ die TSF vollstandig
dargestellt sind.

ADV_FSP.[34] Semiformal / For-
mal functional specification

Developer action elements:

The developer shall provide a funcADV_FSP.[31].1D
tional specification.

Content and presentation of evi-

dence elements:

The functional specification shall de-ADV_FSP.[31].1C
scribe the TSF and its external inter-

faces using a semiformaformal style,

supported by informal, explanatory text

where appropriate.

The functional specification shall be in-ADV_FSP.[3].2C
ternally consistent.

The functional specification shall de-ADV_FSP.[3].3C
scribe the purpose and method of use

of all external TSF interfaces, provid-

ing complete details of all effects, ex-

ceptions and error messages.

The functional specification shall com-ADV_FSP.[31].4C
pletely represent the TSF.

The functional specification shall in-ADV_FSP.[31].5C
clude rationale that the TSF is com-

pletely represented.

17.12.2004

21/117

[BS
.)

ADV_FSP.[31].1E

ADV_FSP.[31].2E

105

365

Devlopment and Evaluation of Formal Security Policy Models

Version: 1.1

in the scope of ITSEC and Common Criteria

Guideline

Elemente zu Evaluatoraufgaben:

Der Evaluator mul3 bestatigen, dal3 die be-

reitgestellten Informationen alle Anforde-

Evaluator action elements:

The evaluator shall confirm that the in-
formation provided meets all require-

rungen an Inhalt und Form des Nachweises ments for content and presentation of

erfillen.

Der Evaluator muf feststellen, daf3 die funk-
tionale Spezifikation eine getreue und voll-
standige Umsetzung der funktionalen EVG-
Sicherheitsanforderungen ist.

Sicherheitsmodell (ADV_SPM)

Sicherheitsmodelle sind strukturierte Dar-
stellungen der Sicherheitspolitiken der TSP
und dienen der Schaffung einer starkeren
Vertrauenswiurdigkeit, da3 die funktionale
Spezifikation mit den Sicherheitspolitiken

der TSP und schlief3lich mit den funktiona-

len Anforderungen an den TOE (EVG) Uber-
einstimmt. Dies wird durch entsprechende
Ubereinstimmungen zwischen der funktio-
nalen Spezifikation, dem Sicherheitsmodell
und den Sicherheitspolitiken, die im Modell

dargestellt sind, erreicht.

Ziele

Die Zielsetzung dieser Familie besteht in
der Schaffung zusatzlicher Vertrauenswir-
digkeit, daf? die in der funktionalen Spe-
zifikation enthaltenen Sicherheitsfunktionen
die Politiken in der TSP durchsetzen. Dies
wird erreicht durch die Entwicklung eines
Sicherheitsmodells, das auf einer Teilmen-
ge der Politiken der TSP basiert und durch
einen Nachweis der Ubereinstimmung zwi-
schen der funktionalen Spezifikation, dem
Sicherheitsmodell und diesen Politiken der
TSP.

evidence.

The evaluator shall determine that the
functional specification is an accurate
and complete instantiation of the TOE
security functional requirements.

Security
(ADV_SPM)

Security policy models are structured
representations of security policies of
the TSP, and are used to provide in-
creased assurance that the functional
specification corresponds to the secu-
rity policies of the TSP, and ultimately
to the TOE security functional require-
ments. This is achieved via corre-
spondence mappings between the func-
tional specification, the security policy
model, and the security policies that are
modelled.

Objectives

It is the objective of this family to pro-
vide additional assurance that the secu-
rity functions in the functional specifi-
cation enforce the policies in the TSP.
This is accomplished via the develop-
ment of a security policy model that
is based on a subset of the policies of
the TSP, and establishing a correspon-
dence between the functional specifi-
cation, the security policy model, and
these policies of the TSP.

policy modeling

22 /117

17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Anwendungsbemerkungen Application notes

Obwonhl eine TSP samtliche Politiken um- While a TSP may include any policies,
fassen kann, haben TSP-Modelle bisher nur TSP models have traditionally repre-
Teilmengen dieser Politiken dargestellt, da sented only subsets of those policies,
die Erstellung von Modellen fur bestimm- because modeling certain policies is
te Politiken beim gegenwartigen Stand der currently beyond the state of the art.
Technik nicht méglich ist. Der aktuelle Stand The current state of the art determines
der Technik bestimmt, flr welche Politiken the policies that can be modeled, and
Modelle erstellt werden konnen, und der the PP/ST author should identify spe-
PP/ST-Verfasser soll die spezifischen Funk- cific functions and associated policies
tionen und die mit diesen verknipften Politi- that can, and thus are required to be,
ken, fur die Modelle erstellt werden kdnnen modeled. At the very least, access con-
und daher auch erstellt werden missen, iden-trol and information flow control poli-
tifizieren. Zumindest missen Modelle fir cies are required to be modeled (if they
Politiken fUr Zugriffskontrolle und Informa- are part of the TSP) since they are
tionsfluBkontrolle erstellt werden (wenn die- within the state of the art.

se Teil der TSP sind), da dies beim aktuellen

Stand der Technik mdglich ist.

Fur jede Komponente in dieser Familie For each of the components within this
besteht die Anforderung, die Regeln und family, there is a requirement to de-
Eigenschaften der anwendbaren Politiken scribe the rules and characteristics of
der TSP im TSP-Modell zu beschreiben applicable policies of the TSP in the
und sicherzustellen, da das TSP-Modell TSP model and to ensure that the TSP
die entsprechenden Politiken der TSP er- model satisfies the corresponding poli-
fullt. Bei den ,Regeln* und ,Eigenschaf- cies of the TSP. The “rules” and “char-
ten" eines TSP-Modells ist beabsichtigt, acteristics” of a TSP model are in-
Flexibilitdt hinsichtlich der Art des Mo- tended to allow flexibility in the type of
dells, das entwickelt werden kann zu er- model that may be developed (e. g. state
lauben (zum Beispiel Zustandstbergang, transition, non-interference). [...]
Interferenz-Freiheit). [...]

ADV_SPM.3 Formales EVG- ADV_SPM.3 Formal TOE secu-
Sicherheitsmodell rity policy model

Elemente zu Entwickleraufgaben: Developer action elements:

)=

367

368

Der Entwickler mu3 ein TSP-Modell bereit- The developer shall provide a TSPADV_SPM.3.1D

stellen. model.

Der Entwickler muR die Ubereinstimmung The developer shall demonstrate orADV_SPM.3.2D

zwischen der funktionalen Spezifikation und prove, as appropriate, correspondence
dem TSP-Modell nachweisen oder, wie je- between the functional specification
weils angemessen, beweisen. and the TSP model.

17.12.2004 23 /117

BS
0

ADV_SPM.3.1C
ADV_SPM.3.2C

ADV_SPM.3.3C

ADV_SPM.3.4C

ADV_SPM.3.5C

ADV_SPM.3.6C

ADV_SPM.3.1E

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Elemente zu Inhalt und Form des Content and presentation of evi-
Nachweises: dence elements:

Das TSP-Modell muf? formal sein. The TSP model shall be formal.

Das TSP-Modell mul3 die Regeln und Eigen- The TSP model shall describe the rules
schaften aller derjenigen Politiken der TSP and characteristics of all policies of the
beschreiben, fur die ein Modell erstellt wer- TSP that can be modeled.

den kann.

Das TSP-Modell muf3 eine Erklarung enthal- The TSP model shall include a ratio-
ten, die nachweist, dafl? dieses in bezug aufnale that demonstrates that it is consis-
alle Politiken der TSP, fur die ein Modell er- tent and complete with respect to all
stellt werden kann, konsistent und vollstan- policies of the TSP that can be mod-
dig ist. eled.

Der Nachweis der Ubereinstimmung zwi- The demonstration of correspondence
schen dem TSP-Modell und der funktionalen between the TSP model and the func-
Spezifikation muf3 zeigen, dal alle Sicher- tional specification shall show that
heitsfunktionen in der funktionalen Spezifi- all of the security functions in the
kation in bezug auf das TSP-Modell konsi- functional specification are consistent
stent und vollstandig sind. and complete with respect to the TSP
model.
Wo die funktionale Spezifikation semiformal Where the functional specification is
ist, muR auch der Nachweis der Ubereinstim- semiformal, the demonstration of cor-
mung zwischen TSP-Modell und funktiona- respondence between the TSP model
ler Spezifikation semiformal sein. and the functional specification shall be
semiformal.
Wo die funktionale Spezifikation formal ist, Where the functional specification is
muR auch der Beweis der Ubereinstimmung formal, the proof of correspondence be-
zwischen TSP-Modell und funktionaler Spe- tween the TSP model and the func-
zifikation formal sein. tional specification shall be formal.

Elemente zu Evaluatoraufgaben: Evaluator action elements:

Der Evaluator muf3 bestétigen, daf3 die be- The evaluator shall confirm that the in-
reitgestellten Informationen alle Anforde- formation provided meets all require-
rungen an Inhalt und Form des Nachweises ments for content and presentation of
erfillen. evidence.

24 [117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

3.4 Determination of the catalog of requirements

In compliance with the citations assembled above the concrete requirements on
formal securiy policy models are determined in this chapter. The formation of the
individual parts of the requirements is oriented towards a justification of the con-
cepts and needs of ITSEC as well as CC. Naturally, an evaluation assurance level
is targeted that requires the provision of a formal security policy model (cf. [4,
Par. E[456].2] resp. [1, Part 3, Par. 223, 229, 234)).

3.4.1 Terminology

For describing the constituing parts of the TOE securiy policy a different termi-
nology is used in ITSEC and CC. Neiher in ITSEC nor in CC the corresponding
parts of the TOE security policy model are explicitly termed.

In order to respect the terminological constraints of both criteria, a standardis-
ation of the terminology is proposed in this chapter that will consequently be used
in the sequel. The goal of this standardisation is to support a demarcation of the
identified objects that is consistent with the literature (cf. Chap. 6).

Four distinguished notions are described that are pairwise assigned to the TOE
security policy and the TOE security policy model on the one hand resp. the analy-
sis and the design process of software engineering on the other hand (cf. Tbl. 3.1):

Security Characteristics (Sicherheitscharakteristika) literally corresponds to
the term used in the english original of the CC (cf. [1, Part 3, Par. 368]) for
one part of the TOE security policy. Due to the necessary separation from
the notionSecurity Properties (Sicherheitseigenschaftém problematic
translation in the german edition of the CC (cf. [2, Part 3, Par. 368]) was not
adopted. The notiosecurity Characteristics (Sicherheitscharakteristika)
Is going to be used as the analogon of the term “practices (Praktiken)” used
in ITSEC (cf. [4, Par. 2.13]). Together with ti&ecurity Features (Sicher-
heitsmerkmalei}f is assigned to the desing process, i. e. it comprises all def-
initions, attributes, actions etc. necessary for the detailed characterisation of
the functionality of the TOE security policy. This functionality is oriented
towards the realisation of the general rules of operation of the TOE security
policy formulated in theSecurity Principles (Sicherheitsprinzipien)

Security Principles (Sicherheitsprinzipien) is used in ITSEC (cf. [4, Par. 2.81])
and ITSEC JIL (cf. [8, Par. 279]) for the description of the TOE security
policy. Due to the dichotomy of the TOE security policy the notion is
used as the analogon of the terms “laws and rules (Gesetze und Regeln)”
used in ITSEC (cf. [4, Par. 2.13]) resp. “rules (Regeln)” used in CC (cf. [1,

17.12.2004 25/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models

Version: 1.1 in the scope of ITSEC and Common Criteria Guideline
Design process Analysis process
Security Policy Security Characteristics | Security Principles
(Sicherheitspolitik) (Sicherheitscharakteristika) (Sicherheitsprinzipien)
Security Policy Model| Security Features Security Properties
(Sicherheitsmodell) | (Sicherheitsmerkmale) (Sicherheitseigenschaften)

Table 3.1: Terminology of TOE security policy and model

Part 3, Par. 368]). Together with tiSecurity Properties (Sicherheitseigen-
schaftenthe notionSecurity Principles (Sicherheitsprinzipieis)assigned

to the analysis process, i. e. it comprises of the general rules of operation of
the TOE security policy derived from the analysis of the security environ-
ment and objectes and stated in the security requirements. These rules of
operation form the framework for the formulation of tBecurity Charac-
teristics (Sicherheitscharakteristikand thus typically contain no detailed
functional interrelationships.

Security Features (Sicherheitsmerkmale)correspond to th&ecurity Charac-
teristics (Sicherheitscharakteristikalhe notion comprises the modeling of
the functional features of the TOE security policy. These form the basis for
the demonstration of validity of th8ecurity Properties (Sicherheitseigen-
schaften)

Security Properties (Sicherheitseigenschaftengorrespond to th8ecurity Prin-
ciples (Sicherheitsprinzipien)The notion comprises the modeling of the
basic properties of the TOE security policy. These form the framework for
the formulation of theSecurity Features (Sicherheitsmerkmale)

3.4.2 Specification

The formal security policy shall specify all ingridients of the TOE security pol-
icy provided that they can be modeled formally according to the state of the art
(cf. [4, Par. E[456].2], [8, Par. 280] resp. [1, Part 3, Par. 367 et seq. and Ele-
ment ADV_SPM.3.2C]). In consideration of its integration in the hierarchically
structured design of the TOE the formal security policy model at leat shall consist
of the following two components:

1. Security Properties (Sicherheitseigenschaften)

In this part of the model the security principles (Sicherheitsprinzipien) of the
TOE security policy are formally specified. The security properties com-
prise a formal description of general rules of operation of the TOE security
policy stated in the security principles (Sicherheitsprinzipien).

26 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

2. Security Features (Sicherheitsmerkmale)

In this part of the model the security characteristics (Sicherheitscharakter-
istika) of the TOE security policy are formally specified. The security fea-
tures comprise a formal description of the definitions, attributes, actions etc.
necessary for the detailed characterisation of the functionality of the TOE
security policy stated in the security characteristics (Sicherheitscharakteris-
tika)

The fomal specification shall be appropriate (cf. Sec. 3.4.3) for the correspon-
dance demonstration of the security policy model and the security principles and
characteristics of the security policy (cf. [4, Par. E[456].3] resp. [1, Part 3, Element
ADV_SPM.3.3C)).

Both levels of the specification shall be linked with each other via a formal ver-
ification (cf. Sec. 3.4.4), i. e. the validity of the security properties shall be proved
for the security features. In order to facilitate the verification it may be suggestive
to specify additional model levels between security properties and features.

The formal specification shall be apprpriate (cf. Sec. 3.4.3 and 3.4.4) for the
correspondence demonstration of the securiy policy model and the architectural
desing (cf. [4, Par. E6.6]) resp. the functional specification (cf. [1, Part 3, Element
ADV_SPM.3.4C)).

It is admissable to refer to a (known) generic formal security policy model
(e. g. non-interference according to Rushby [41]) Such models typically contain
both levels of specification required above. Due to their generic character these
models shall be instantiated for use with the concrete TOE. The instantiation shall
also be formal (cf. Chap. 6) and conform to the requirements mentioned above.

3.4.3 Interpretation

The explanation which is called “informal interpretation” in ITSEC and “ratio-
nale” in CC shall be part of the documentation of the formal security policy model.
It shall provide the connection between the specification, which is given in a for-
mal notation, and the development documents that relate to the formal security
policy model. The explanation shall consist of the following components:

1. The correspondence demonstration of the formal security policy model and
the TOE security policy formulated in the functional requirements (cf. [4,
Par. E[456].3] resp. [1, Part 3, Element ADV_SPM.3.3C]). Corresponding
to the structure of the formal specification this results in obligations for
demonstrating the

(a) Correspondence of the security properties (Sicherheitseigenschaften)
and the security principles (Sicherheitsprinzipien).

17.12.2004 271117

\ i Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

(b) Correspondence of the security features (Sicherheitsmerkmale) and
the security characteristics (Sicherheitscharakteristika).

The statement of functional security requirements is of much lower impor-
tance in ITSEC than in CC. Consequentially, a relation between security
policy and security objectives is established in JIL [8, Par. 279]. Never-
theless, the obligation for demonstration defined here conforms to the re-
qguirements of the CC as well as to the requirements of the ITSEC. Concrete
experiences with evaluations according to ITSEC actually show that it is
beneficial to refine the security objectives in detailed (functional) require-
ments (cf. Sec. 5.3). For ITSEC as well as CC the required correspondence
demonstration therefore establishes an indirect relation to the security ob-
jectives.

2. Correspondence demonstration of the formal security policy model and the
functional specification (cf. [1, Part 3, Element ADV_SPM.3.4C])).

Although the direct relation between (formal) security policy model and
(formal) architectural design established in ITSEC [4, Par. E6.6] is affirmed
in JIL [8, Chapter 19], the obligation for demonstration defined here corre-
sponds to the requirements of the CC as well as to the requirements of IT-
SEC. The concrete relation with the architectural design will be established
via the correspondence demonstratiofithe functional specification and
the architectural design, which is necessary anyway.

Where the functional specification is given in semiformal (cf. [4, Par. E[45].2]
and [1, Part 3, Component ADV_FSP.3]) resp. formal (cf. [4, Par. E6.2] and
[1, Part 3, Component ADV_FSP.4]) notation the informal explanation shall
be complemented with a semiformal demonstration resp. a formal proof
(cf. Sec. 3.4.4).

The required explanations shall bridge the security requirements and functions
(cf. [1, Part 3, Par. 314]) in order to arrive at an increase of assurance in the
TOE security policy via the formal security poliy model (cf. [1, Part 3, Par. 309]).
Beside this, they shall ensure the quality of the formal security policy model w.r. t.
the securits needs via the connection of the different presentation formats.

When the specification is built on the basis of a (known) generic formal se-
curity policy model the required instantiation is subject of interpretation, i. e. the
explanations shall relate to the instantiated model (cf. Chap. 6).

2For the guidance at hand the relation between functional specification and architectural design
is of subordinate importance and therefore is not elaborated.

28 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

3.4.4 \erification

Corresponding to the required structure of the formal security policy model the
following proofs shall be provided:

1. The suitability of the formally specified security features (Sicherheitsmerk-
male) to enforce the formally specified security properties (Sicherheitseigen-
schaften) shall be formally verified. For this the correct and complete cor-
respondence of both levels of the specification (s. Abschnitt 3.4.2) shall be
formally proved. When additional levels of the security policy are modeled
between the security properties and features, the correspondence between
all adjacent levels shall be proved.

Where the specification is built via instantiation of a (known) generic formal
security policy model, the required proof frequently exist as a part of the
generic model. In such cases arise proof obligations that ensure that the
respective instantiation remains within the given framework of the generic
model (cf. Chap. 6).

This part of the verification of the formal security policy model corresponds
to the proofs of invariance of properties of the formal security policy model
required by ITSEC JIL (vgl. [8, Abs. 287]). It is supposed to ensure at
a high abstraction level the quality of the security functionality measured
against the security requirements.

2. The absence of contradictions within the formal securit policy model shall
be formally proved. Due to fundamental problems (cf. Sec. 4.5) this part of
the verification can not be completely adressed within the formal calculus
that is used for the specification. The concepts located outside the calculus
that are necessary for the proof of absence of contradictions shall be well-
founded and restricted to a minimum.

When the formal specification is structured in several levels, the pairwise
correspondence of which is to be formally proved, it is typically sufficient to
verify the absence of contradictions for the lowest level of the specifiaction,
I. e. for the level of the security features. Moreover, the proof of absence of
contradictions is relocatable to the level of the functional specification and
further to the level of the architectural design, if their correspondence with
the formal security policy model is formally proved.

Where the specification is built via instantiating a (known) generic formal
security policy model, the proof frequently can be constrained to the ab-
sence of contradictions within the concrete instatiation. The precondition
for this is that the absence of contradictions within the generic model is
given.

17.12.2004 29 /117

\ d Devlopment and Evaluation of Formal Security Policy Models

% Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

This part of the verification of the formal security policy model corresponds
to the proof of internal consistency of the formal security policy model re-
quired by ITSEC JIL (vgl. [8, Abs. 287]). It shall ensure that the formal
arguments rest on an solid basis.

The highest assurance levels of ITSEC and Common Critera respectively re-
quire a formal specification of the security functions (cf. [4, Par. E6.2] resp. [1,
Part 3, Component ADV_FSP.4]) as well as a formal architectural design (cf. [4,
Par. E6.5] resp. [1, Part 3, Component ADV_HLD.5]). In this case the formal
proof of correspondence between the functional specification and architectural
design is required which is not subject of this guidance. However, the correspon-
dence between the formal security policy model and the functional specification
shall also be formally verified. (cf. [1, Part 3, Element ADV_SPM.3.6C]). As al-
ready noted in Sec. 3.4.3 this proof obligation also conforms to the requirements
of ITSEC, since the correspondence with the architectural desing is to be indi-
rectly proved.

30/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Chapter 4

Basic Concepts of Formal Methods

In Information Technology (IT), like in all other disciplines, sufficient guarantees
of security propertiegan only be provided icientific methodare applied. De-

spite its relatively short history software engineering meanwhile offers practically
applicable developmemhethodswhose scientific foundations compare to those

of established engineering disciplines and therefore in particular allow for third
party evaluations on ambjectifiedbasis. Thus, the rapidly increasing deployment

of systems that are subject to manifold threats and where a failure of protection
mechanisms will lead to severe losses becomes justifiable from an economic as
well as from a social point of view.

Based on concepts from mathematics and theoretical computer science,and,
in particular (symbolic) logic as well as the description and analysis of computa-
tional models, so calleBormal Methodshave become a key discipline in com-
puter science.

One of the key issues of Formal Methods is that they rely on fixed and exactly
defined languages whose semantics are defined upon mathematical concepts. This
means that starting with suébrmal descriptiongspecifications) (security) prop-
erties and relations between specifications can be formulated and established by
verification methods¢hat build on the underlying mathematical models. In most
cases the methods arempleté in the sense that opposed to testing they caller
computations of a system.

While syntactical correctness — i.e. conformance with the given language —
can be checked by help of standard proceduresdtiability of the verification of
properties or relationships remain a critical point. It can only be achieved by using
fixed methods that are independent of a particular case and that are implemented
in tools’.

The complete coverage of computations should not be confused with the notion of complete-
ness of logical proof systems.
2In addition to reliability also the complexity of analysis procedures forces the utilization of

17.12.2004 31/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

4.1 Formal Methods

For an assessment of formal methods applied in the context of CC evaluations
it seems to be necessary to recall the overall aim and the general setting before
taking a closer look at particular aspects.

Formal methods appiyathematicahotions to elements of software engineer-
ing. In contrast to the development of mathematical theories this takes place under
different conditions and, above all, according to different aims.

Mathematical theory formation takes place within the scientific community.
Driving force for the individuals involved is theublicationof results to prevail on
others to take these up in their own warldccording to this situation one aims at
results of general interest. The public scientific process incladesol functions
that manifest themselves in various institutional forms, like, for example, review
boards.

With respect to scientific progress this kind gpiality assurances devoted
to the main results. As opposed to that it frequently happens that certain details
of the presentation and the proofs contain errors that remain undiscoverd quite a
long time. Typically relevant results are worked on for some period with respect to
formulation and proofs thereby removing early shortcomings in detail. After that
mature mathematical theories present themselves in a form that potentially could
beformalizedin the sense this term is used here. However,such formalizations, as
for example in the MISRA project,are actually carried out rarely.

In the area of software engineering one has to distinguish between single de-
velopments — in this context this concerns formal artifacts as requested by the CC
starting with EAL5 — and the general method which is used for the descriptions
and proofs. The increase in reliability with respect to the former follows from the
fact that the latter is constructive, can be realized by tools, and has to be proved
correct onlyonce and for all

Only for a relatively small community of developers and evaluators (certifiers)
single developments are

e Of interest
e accessible, and
e understandable.

Quality assurance with respect to highly critical systems has to exclude all
errors with the maximum degree of reliability that is conceivable. Formal methods
allow for such guarantees. As opposed to mathematical theories these guarantees

tools.
3The citation index is an important criterium for assessing the scientific qualification.

32 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

do not result from a social process, instead they follow from a rigid application of
a method which is known as being correct. The method itself is

e given independently of a particular application,
e public, and
e subject to discussions in the scientific community.

Its safe application becomes feasible (only) through the use of corresponding
tools

Following the usage mathematical of logic we speak of particular develop-
ments aobject levelentities while methods and tools are dealt with at the so
calledmeta level Formal methods are distinguished by the fact that meta level
considerations are carried out within a mathematical theory. In particular this
means that a mathematicg#dmanticss associated with the language constructs
given by the method. Based on this semantics (meta level) properties can be es-
tablished following the usual mathematical practice. Analysis and verification
procedures realized in tools heavily rely on these results. In this sense one can
speak of theorrectnes®f (the meta theory of) a method.

This guide aims at an assessment of individual developmerfteral justifi-
catiorf of the underlying method is neither mandatory according to the regulations
of CC nor available for the methods and tools used today. This does not mean
that one should not look for certain general standards with regard to methods and
tools. In particular the reliability of tools can be improved without running into a
circulus vitiosus.

The given method defines in a more or less restrictive way the framework for
modeling systems and their security propertléewa concrete instance is treated
within this framework is left to the developer. Compared to other engineering dis-
ciplines there are comparatively few guidelines or even standards. It is the aim
of this guide to improve the current situation with respect to the choice and as-
sessment of formal modeling techniques. From point of view of the authors the
problem ofadequacyof a chosen model will remain the most critical issue. It
should be noted that the interpretation and assessment of object level develop-
ments requires a certain understanding of the underlying meta level theory.

To sum up we may state the following points:

e There should be a clear distinction between individual object level develop-
ments and the general method with its underlying meta theory.

e Methods have to be accessed with respect to scientific foundation of their
meta theory. For tools the correct technical realization has to be included.

4in the sense we use this term for individual developments

17.12.2004 33/117

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

BS
2

e The reliability of object level results depends on arigid application of a fixed
method (including analysis and verification procedures). This is guaranteed
by the use of tools.

e With respect to individual developments the main emphasis has to be on
checking the adequacy of the formal model.

4.2 Methods and Tools

Formal methods provide a mathematically grounded framework for
¢ the description of systems (specifications),
¢ the formulation of postulated properties and relations, and
¢ the verification of these postulates.

As before we continue to use the term (formad¢yvelopmentor the whole of the
resulting artifacts.

First of all formal methods confront the user withf@amal language For
textual representations the scope of the langusyggax is given by grammars or
related formalisms. Today there is an increasing use of graphical representations
augmented by textual annotations.

In principle there is no difference: In all cases t@missibledevelopment
objects are uniquely defined, tlsgntactical correctnesBeingdecidable Typi-
cally one distinguishes between grammatical (context free) correctnesgpmnd
correctnessThe latter is concerned with properties that are checked by compilers
as part of the so called “semantic analysis”. Most of the grammatical analysis
procedures work in linear time, while type checking is more involved. For some
systems type correctness is not even decidable which means that type checking
needs certain proof obligations to be fulfilled. Strictly speaking this is no longer
only a syntactical check.

Editing, visualizing, and syntactical correctness checks are supported by the
front-end of tools. Correct syntactical structures tailored for an efficient syntacti-
cal analysis are usually transformed imternal representationthat are used in
subsequent steps.

At the meta level structures like these form the starting point for associating
semanticsvith language constructdathematical modelssed for semantic def-
initions have developed into an extremely rich variety of approaches over the last
years. As a rough classification we mention

e models of logical languages, i.e. models in a stricter sense,

34 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

e algebraic and category theoretic semantics for abstract data types (ADT),
e automata and state transition systems, and
e semantic models for programming languages.

The meta theory of a method provides general assertion about the underlying
mathematical models. In particular this concerns verification procedures for es-
tablishing postulated properties and relationships as part of developments. The
reliability of these proofs depends on fundamental requirementsrioral verifi-
cation techniques:

e The proof procedure is given in an algorithmic way, i.e. all steps are fixed in
a unique and fully detailed way. Basically that proof procedures are given
in a way that can lead directly to an implementation.

e The correctness of the verification procedure can be established once and
for all. In particular it does not depend on user interactions in a special
application.

e The justification (of the correctness) of the procedure is part of a mathemat-
ically objectified theory.

As far as their actual content is concerned, methods can be classified accord-
ing to the extent they support general aspects of software engineering or even
application specific techniques.

Systems like Isabelle, [49, 50], and PVS, [51], provide an expressgreal
formalismas a generic framework for formal developments. In addition to the
logical language and the corresponding deductive mechanism they offer support
for inductive and recursive definitions as part of a powetfpke systemBeyond
a general mechanism for organizing logical theories there are no means for struc-
turing developments.

Systems of this kind are used in two ways. Firstly, individual developments
can be realized directly, either in an ad hoc way or by following a certain scheme.
Examples for such schemes in the security area are formal models for information
flow properties in [21, 28, 41] and the inductive verification of protocols in [47].
Secondly these systems can be used to support more specific methods, like for
example a verification environment for imperative programs in [48]. One speaks
of anembeddingf these methods.

While Isabelle and PVS have to be considered more as logical formalisms than
as actual development methods there are a number of systems that support special
techniques, among others for the formal treatment of

e data structures and algorithms,

17.12.2004 35/117

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

BS
2

e state transition systems (automata),

e programming languages (like Java and C),

e concurrency (reactive, parallel, and distributed systems), and
e real time.

Specification languagesirror the design paradigms supported by the systems
at the syntactical level. The language constructs are mapped to corresponding
models by a so callesemantic evaluatian

Typically developments argtructuredby dividing specifications into compo-
nents (substructures) and by linking specifications according to relationships like
refinement, transformation, simulation, and validity of properties.

Examples for methods that support one or more of the above mentioned as-
pects and structuring mechanisms are AutoFocus, [52, 53], B, [55], RAISE, [57],
VDM, [56], VSE, [23] and Z, [54].

Besides these still fairly general methods a great number of approaches tai-
lored for a special application domain have emerged. Compared to the more gen-
eral systems special purpose systems allow for a stronger guidance of the user and
an increase in efficiency. In the security area systems for the specification and
(automatic) analysis agryptographic protocoldorm a typical example. On the
other hand comprehensive developments are concerned with several different as-
pects and therefore require approaches that integrate special modeling techniques
within a sufficiently general framework.

4.3 \erification Techniques

Formal methods lead to a clear distinction betwdeterminationsvhich above
have been called “specifications” and relations between these. The latter have to
be regarded as postulates until their validity has been established. The process
that turns postulates into established results will be calledfication In the
opinion of the authors the verification on an abstract basis, i.e. before a technical
realization, constitutes the real strength of formal methods

In the context of ITSEC and CC we have the following basic verification tasks:

1. the validity of security properties of the given security policy (see sec-
tion 3.4.4)°,

5Of course also formal modeling alone might lead to a deeper insight into security mechanisms.
5The verification of (securitypropertiescan be regarded as the verification of a “is-satisfied”
relation between a system specification and a requirements specification.

36 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

2. the correspondence between the functional specification and the security
policy, and

3. the correspondence between the high-level design and the functional speci-
fication.

The semantiomodels at the meta level uniquely determine whether a postu-
lated relationships is valid or not. However, as discussed in the beginning, for
verification purposes it is not enough to use a mathematical argumentation in the
usual sense. Instead, one aims at a fixed algorithmic procedure that takes as input
the syntacticalrepresentations of the specifications involved.

Verification techniques used as part of formal development methods can roughly
be classified intanodel base@nddeductiveapproaches. Model based (verifica-
tion) techniques use a more or less explicit internal representation of the (seman-
tic) models for checking whether they fulfill the required properties. In most cases
these properties are given by logical formulae, i.e. we are concerned with a valid-
ity problem as discussed in the following section.

Classical techniques fanodel checkingeduce the given verification task to a
decision problem for certain computation mechanisms, like for example the ques-
tion whether the language of a (finite) automaton constructed from the input is
empty. These techniques are restrictedinide statesystems. Increasingly sys-
tems that build on aymbolicrepresentation of the state space are used in this
context. Due to their ability to deal with sets of states they are more efficient and
can be applied also for decidable problem classes of infinite state systems. Well
known model based verification systems are SMV, [58], and SPIN, [60]. In gen-
eral properties of infinite state systems are not decidable. To use model checking
also in these casedstractiontechniques have to be applied, [59].

Besides the generic approaches mentioned so far there exists a great variety
of systems that are application specific or restricted to particular properties. The
latter for example holds for automagcogram analysis.

Starting with so calleéxiomswhich are assumed to be “true” deductive ap-
proaches infer certain assertionscasiclusions The sequence of inference steps
that lead to a conclusion is calledoeoof. The “axiomatic method” has become
the main mode of operation — perhaps better presentation — in mathematics.

Formal proofs are carried out within a fixed (formal) language and a fixed
inference systenmat precisely defines the admissible proof steps on a purely syn-
tactical basis. In mathematics there are (and were) only a few attempts to actually
carry outformal proofs in this strict sense. Moreover, today there is a wide agree-
ment that a distinction has to been made between the process of (mathematical)
discovery and the presentation of mature theories.

In the context of methods for formal development system specifications are
transformed to, or directly given as axioms of a logical language. Verification

17.12.2004 37 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

tasks give rise to proof obligations which require certain assertions to be inferable
(as theorems). The proof obligations are discharged by generating proofs in the
given inference system thereby showing that the assertions actually follow from

the axioms.

The axiomatic approach is very general since it's only limitations lie in the
expressiveness of the underlying logical language. However, in most cases formal
proofs require someser interactiorto guide the proof search. Currently “hybrid”
approaches are developed that for example

e combine automatic and interactive proof techniques,

¢ integrate model based approaches to fulfill certain proof obligations, or the
other way round,

e use model based techniques to generate conditions that are then treated de-
ductively.

4.4 Logic

Symbolic logi@s it goes back to Gottlob Frege, [61], gives a mathematical precise
account of the notion of formal proof. In particular in it's form @smputational
logic it provides the basis for implemented proof systems and their (meta level)
analysis.

4.4.1 Basic Notions

Formal inference systems are given by
¢ aformally defined (logical) language and
e a concept of proof based on rules that operate on syntactical entities.

Formal syntax definitions consist of (formation) rules that describe how the var-
ious constructs are composed out of simpler constituents. Logical languages
typically distinguish betweetermsto denote objects aniwrmulasto formulate
propositions. The starting point for building up terms and formulas is given by ap-
plication specific symbols fdunctionsandrelations Terms and atomic formulas

are obtained byapplyingfunction and relation symbols to arguments which (in
turn) consist of terms. Atomic (unstructured) terms are constants (nullary func-
tion symbols) ovariables The basic vocabulary is given by a so caléghature
Formulas in logical languages are structured by propositicoahectiveslike —

38/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

(not), A (and),V (or), and— (implies), and byquantification(on variables)yzx :
(for all z) and3z : (for somex).

The fact that a function denoted by the (unary) sympas theinverseof a
function denoted by the (unary) symbglis expressed byx : ¢(f(z)) = =,
where= is a (binary) relation symbol denoting equality. In the area of formal
program development one uses mosglyedlanguages where for the function and
relation symbols not only a number is given asaaity but also the domains from
which the respective arguments are taken. For basic domains one often speaks of
sorts In typed languages also variables have to be declared to be of some type or
sort. Using a sort symbdD the above proposition becomeés : D. g(f(z)) =
x. The injectivity of a function denoted by is expressed byz, : D. Va, :

D. (f(ﬂfl) = f([EQ) — T1 = [L‘g).

An interpretationM associates a concrete mathematical structure with a given
signatureSig, thereby giving meaning to the elements%fy. The semantics
for a logical language£(Sig) is given be defining thealidity of a proposition
(formula) ¢ constructed fronbig in M, written M |= . In this caseM is said
to be amodel(in the logical sense) af.

The above mentioned techniques for model checking associate interpretations
of a logical language with system specificationgc. They check whether a
propositiony is valid for the interpretatiooM = Mod([spec]), i.e. whether
Mod([spe]) = ¢ holds.

In theaxiomaticapproach the logical language is used not only for expressing
properties but also for describing the systems themselves by axigms As
opposed to model checking in this cadkepossible models of the axiom system
I'spee- This leads to the central question of symbolic logic: Is each madedf
Lspecs 1.€. M = forall ¢ € T, also a model op, i.e. M = ¢? If thisis the
casey is said to follow (logically) froml';,.., written asl’s,.. = ¢.

To interpretVz : D. g(f(xz)) = = first of all one has to provide a domain
[D]. The domain[D] may consist of data objects like numbers, strings, and
sequences of bits. For natural numbers one could chose the semanficss of
[f](n) := n + 1 and the semantics gfas[g](n) := n—1, where— is the non
negative difference. Choosiri@] as the residue class modulo= p - ¢, i.e. as
the set{0,...,n — 1}, thenf andg could be interpreted as RSA encryption and
decryption, respectively. For stringsandg could be interpreted a®mpress
anduncompress, respectively. But not only in these concrete cases the function
corresponding tg is injective: all models ofz : D. g(f(z)) = = also are models
of Vay : D.Vay : D. (f(x1) = f(x2), i.€.

Ve:D.g(f(z)) =2 EVr: D.Vag: D. (f(x1) = f(z2) — 21 = 23) .

The axiomatic approach admabstractionfrom certain particuliarities of sin-
gle models. Sd'y,.. = {Vz : D. g(f(z)) = x} can be viewed as an abstract

17.12.2004 39/117

BS
0

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

specification of compress and uncompress functions describing the relevant (func-
tional) behavior for the outside world. The specification is intended to be com-
pletely non constructiveHow the functions will be realized is subject tesign
decisionof subsequent development phases. The properties established at the ab-
stract level are preserved provided that the development process takes place within
the class of models df;,...

4.4.2 Proof Techniques

The notion of logical consequence as introduced above uses concepts like the class
of all models of a (axiomatic) specificatidn,... On this basis no verification pro-
cedures can be defined. One therefore tries to characterize logical consequences
on purelysyntacticalgrounds by manipulatingroof structureghat are built up
from constructs of the underlying logical language. Given axibrasd a propo-
sition ¢ rules from by a (prooffalculusare used to generate a structure that (by
definition) represents a proof gffrom I'. If such a proof exists one writésh- 1),
i.e. 1) can bederivedfrom I".

For example, the so calleskquence calculugses as proof structureésees
whose nodes consist of judgments of the fdfms A, wherel’ and A are Se-
quence®f formulas. The formulas ifi andA are considered as conjunctions and
disjunctions, respectively. Theequent arrowhas to be read as an implication.
For (finite) I a proof of¢ is given by a tree wittbeq(I") = 1 as root and leaves
I; — A, that satisfy(Set(T;) N Set(A;)) # 0. Proof rules define how trees are
constructed.

As an example we demonstrate a sequent calculus proof of the injectivity of
under the assumption thais an inverse off. The proof in this case is linear, i.e.
there are no branching nodes.

a=b=a=0»>
ST@) = aatflay —v=a=0 M
9(f(a)) = a,g(f(b)) =0b, f(a) = f(b) = a=0b L E
9(f(a)) = a,g(f(b)) =b= (f(a) = f(b) = a=b v — I(b)
Vo Do gli@) = o,9(f(@) == (f() = JO) = a =) "7
VoD g(f0) =2 = U@ =70 ~a=b o
Ve : D.g(f(x)) =z =Vay: D.(f(a) = f(x2) — a=1z2)

In a goal oriented way, starting with the proposition at the root and moving up
in the tree, there are the following proof steps:

1. In the first two steps the quantifiers on the right side<gfare eliminated
by introducingfreshvariables, sometimes called “parameters”. In words:

40/ 117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

“Let a andb be arbitrary but fixed.”

2. After that the universal quantifiers on the left hand side are instantiated, the
first one bya and the second one by

3. In the next step the implication on the right hand side is eliminated by shift-
ing its premise to the left hand side thereby turning it into an additional
assumption.

4. Inthe last two steps equalities on the left hand side are used to replace terms.
In the first stepf () is replaced byf(a) in g(f(b)) and after thay(f(a)) is

replaced by: in g(f(a)).

Implicitly we have removed formulas no longer needed.

A calculus issoundif I' - ¢p = T' = %. In the context of formal program
development soundness is the most important meta level issue. Soundness guar-
antees that properties established by a calculus actually are logical consequences.

A calculus iscompleteif I' = ¢ = T F . Forfirst order predicate
logic which was used in the example above complete calculi exist, [73], [76].
However, completeness in this sense does not mean that all (mathematical) “truth”
can be established mechanically. By construction of a concrete formula, [74, 75],
Godel has shown that for sufficiently rich axiom systdnthere exists not even a
(constructive) consistent enrichmdritsuch that eithef” |= ¢ or IV |=).

For many formalisms used in the area of formal software development there
can be no complete calculus. Examples are higher oder logics where quantifi-
cation is not only over elements of basic domains but also over functions and
relations (of arbitrary type). Isabelle and PVS (see above) use formalisms of this
kind. Including computational structures in the semantics of centaidalexten-
sions of first oder predicate logic, like in the cas@emporal Logi¢[63, 67], and
Dynamic Logic [64], also leads to incompleteness.

Proof procedure®rganize the generation of proof structures. In most cases
this includessearch Since in general' - v is not decidable the best one can
hope for are systems that actually find a proof in case derivable but possibly
do not terminate otherwise.

In case of the sequent calculus starting with the root one applies rulegthat
duce(proof) goals to lists of subgoals until axioms are reached. If more than one
rule is applicable for a given goalchoicehas to been made. It might happen that
one has to go back on this decision later on by a so called backtracking mecha-
nism. For exhaustive search procedures completeness of the underlying calculus
ensures that eventually a proof is found. However, as mentioned above, in gen-
eral there is no termination criterium that indicates non derivability of the original
goal.

17.12.2004 41 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Since meta level investigations of calculi and proof procedures are carried
out (once and for all) in the (scientific) public the current situation where, with
a few exceptions, this work is done “on paper” seems justifiable. As opposed
to that for object level proofs the mere request for dependability maleehine
assistancendispensable. The example presented above is somewhat misleading
in this context: Proofs as they occur in real developments consist of hundreds
(sometimes thousands) of nodes and thus are far from what humans can carry out
manually in all detail.

Implemented proof procedures (“prover”) can be classified into

e decision procedures,
e systems for automated theorem proving, and
e interactive proof systems.

Decision procedures are used for propositional variants of formalismsand spe-
cial theories,

Automatic theorem provers like SPASS, [65], and SETHEO, [66], automati-
cally carry out a complete proof search for first order formulas based on efficient
proof structures. In a first step they generateoamal formrepresentation of the
given proof obligation.

In the case of interactive systems some guidance concerning proof search has
to be provided by the user. They are used for the more expressive formalisms
mentioned above and, in particular, foductive proofghat typically require cre-
ativity. User interaction in this context is only concerned with the selection of
proof steps while the actual (proof) rules remain fixed.

Decision procedures are not necessarily based on calculi of the usual kind.
In general, the proof protocol generated by the systems varies much. In the case
of model based procedures there are no proofs at all in the sense discussed here.
Therefore the request for “formal proofs” should be regarded more as one for
“mathematically sound verification procedures”.

4.5 Consistency

Perhaps the most serious problem with the deductive approach is to guarantee
consistencyf axiomatic theories. Consistency means the absence of contradic-
tions: There is no propositiop such that® = ¢ andI" F = hold at the same
time. Thus consistency is a property of the deductive apparatus.

Consistency is aritical issue.

42 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models "
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

e For most deductive systenadl formulae become derivable in case of in-
consistency. If an axiomatic system specification is inconsistent, all proofs
based on it therefore become meaningless.

e The problem of consistency concerns individual developments (specifica-
tions), but consistency cannot be established within the object level frame-
work given by(T", F).

ITSEC and CC require a “formal proof” of consistency for the security model,
see section 3.4.4. In the following we shall outline object level verification tech-
niques that allow to establish the consistency of axiomatic theories used as part of
(fixed) development methods. Like in all other cases these techniques have to be
justified by certain meta level results. These guidelines are not concerned with the
problem of how to guarantee the correctness of (the meta theory of) methods and
their implementation. Possible criteria for methods and tools definitively have to
consider the question which parts of the meta theory and its implementation have
to be treated formally in the strict sense used here. A comprehensive formal ap-
proach will be confronted with the problem of establishing the consistency of the
theory that ensures object level consistency.

In the approaches presented here consistency is not formalized (and proved)
in a new object level system. Instead the (restriciattactic structuref certain
developments together witbroof obligationsgenerated from this structure ac-
cording to fixed rules guarantee consistency due to certain meta level properties.

In most cases one showrge existence of modelsatisfiability) for axiomatic
specificationd’,... This is sufficient provided that the basic calculus is correct.
Roughly the following situations can be distinguished:

e The syntactic form of',,.. already guarantees consistency.

e I',,.. is an extension of .., , I.. I'spcc = Dspec; @ Tspecy, Where the new
partl'y,.., is of a special form. The consistency If,.. follows from the
syntactic structure df ,,..,, the consistency df,,..,, and proof obligations
Cipeer F ¥lpee, g€NErated froni',., .

¢ Within a given method fol',,.. a model is constructed by refinement, which
in its axiomatic form is entirely based on consistent specifications.

In each case the given method has to grant control over
¢ the syntactic form of specification units,
¢ the relationships between these specification units, and

¢ the proof obligations generated.

17.12.2004 43 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Specifications known to be consistent include pure equational theories, sets
of Horn formulae, and instances of schemes for freely generated data types, like
natural numbers, lists, and trees.

In the area of formal software developmestursiveandinductivedefinitions
play a central role. For extensions by recursively or inductively defined concepts
schema are used that support the preservation of consistency. In many cases be-
yond syntactic restrictions problem speciitoof obligationshave to be satisfied.

In the case of recursively defined functions these proof obligations are necessary
for example to guarantee termination. Mechanisms for consistent extensions can
be found in systems like that of Boyer&Moore, INKA, VSE, and, in a more gen-
eral form, also in Isabelle and PVS.

In all cases considered so far syntactic restrictions were imposgg,onOne
could speak of consistency by construction. If, in certain places, unrestricted ax-
iomatic specifications are allowed the uniform methods from above are no longer
applicable. In these cases, like in VSE, the consistenty,pf can be established
by refining the given specification until a level is reached where all imported spec-
ification are consistent by construction. To show the correctness of refinements
certain proof obligation generated by the system have to be satisfied. Since even
refinements following the paradigm of rapid prototyping require some creativity
of the user the method of “model construction” is no longer uniform.

44 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Chapter 5

Preparation of Formal Security
Models

In view of the requirements that are described in chapter 3.4 the following sec-
tions give some instructions and recommendations concerning the preparation of
a formal security model and parts of it. Examples that are taken from a published
formal security model are used for illustration. This example describes a generic
security model for the creation of digital signatures with the help of a smart card
according to the German Signaturgesetz [13].

The example together with a generic security target [12] was the basis for
a security evaluationof the signature application of corresponding smart cards
sponsored by the TeleTrust e. V. It is a rather generic model as it is not based on
concrete smartcard specifications. The interface description DIN V 66291-1 [11]
was used as the basis for the specification of the model and its realization.

The mentioned formal security model was prepared with the help dfdhe
fication Support Environmel(t/SE) tool which is approved by the German Infor-
mation Security Agency (BSI). VSE is a well-elaborated tool for the specification
and verification of provably correct software. The VSE tool is recommended by
the BSI for the development of IT-products according to the highest assurance
levels of the ITSEC and CC evaluation criteria. Several projects that involve VSE
demonstrate its usability. The examples given in the following sections are de-
scribed with the help of the VSE specification language (VSE-SL). Since all the
examples are self-explanatory we restrict the introduction of the methodology of
VSE to some basics.

The VSE tool offers different methods to structure specifications. It supports
the complete development process starting with the abstract specification of the
desired product properties up to the automatic code generation. Formal develop-

lthe desired evaluation assurance level was: ITSEC EA4.

17.12.2004 45 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

ments are stored within the VSE system which guarantees a consistent state of
the so-called development graph. An integrated deduction unit allows for the ver-
ification of proof obligations that arise during the formal development process.
The VSE tool is characterized by a mature methodology to deal with distributed
systems [23, 26]. Its specification language combines classical abstract datatypes
that are based on first-order logic with a variant of the Temporal Logic of Actions
(TLA) [38].

5.1 Background of the Modeling Example

We consider the model of a security policy of an operational smartcard for the
creation of digital signatures [11, 12, 13] as an illustrating example for the con-
stituent parts of a formal security model. The notion “operational” means that the
production process and the enrollment of personal data will not be considered,
i.e. the integrated circuit on the smartcard contains the signature application and
all personal data of the card owner. We assume that these data are securely han-
dled within the personalization process and that the smartcard itself is handed over
in a secure way to the legal owner. In the following we will call such a smartcard
“signature card”.

The digital signature is generated with the help of the secret signature key of
the card owner. This secret key is stored in a protected area of the memory of the
integrated circuit. Access to the card is realized by a chip card reader that can be
connected for example to a personal computer. In the following all the devices
that can communicate with the smartcard (chip card reader, personal computer,
...) are called “card terminal”.

The most important guideline of the security policy for smartcards is: “The
legal owner is the only authorized user of the signature application”. It should be
impossible that a not authorized person is able to generate a digital signature that
is associated with the legal card owner, even if this person possesses the signature
card. Thus the confidentiality of the secret key that is stored on the signature card
must be ensured. The access to this secret key may only be possible with the
explicit compliance of the legal card holder.

5.2 Determination of the Degree of Abstraction

The construction of formal security models is lead by several aims that apparently
seem to contradict each other. Responsible for this situation is the role of formal
methods as the connector between the functional requirements on the one hand
and the functional specification on the other hand. The functional requirements

46 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

determinewvhatthe TOE (Target of Evaluation) should do, whereas the functional
specification describdsowthe expected security is achieved. The challenge lies
in bridging this gap by a strong formal security model.

Appropriate formal models are characterized by a well-balanced description
of the formal security policy. The quality of this balance between the security
properties and the security features can be measured by the expenditures for:

1. the correspondence proof between the security model and the security po-
licy that is established by the functional requirements,

2. the formal proof of the validity of the security properties based on the secu-
rity features and

3. the formal proof (if necessary) of the correspondence between the security
model and the functional specification.

The main work consists of the determination of the abstraction degree for the
security properties on the one hand and of the security features on the other hand.
This cannot be done schematically in general. A creative process is heeded during
which such a construction is usually adapted several times. This aspect of the
preparation of formal security models cannot be considered satisfactory within
these guidelines. Furthermore, it is the case that the elements of formal security
models as described in this chapter have to be presented in a certain order. The
order that is chosen in this guideline improves the understanding of the given
example, but it should not be taken as a recommendation for a pure top-down
creation process.

Besides the quality of the balance between the security properties and the se-
curity features there is another aspect that has a wide influence on the construction
of formal security models. This is the visibility of threats and the strategy for at-
tacks. This influence appears in a subtle way already in the formal specification
language that is used to formulate the model. If the theories and structures that are
based on the formal specification of the security policy exclude the existence of
unsafe states (wrt. operative threats) then the formal security model cannot cope
with its requirements.

Example. A smartcard with signature application processes different data that
serve completely different purposes. Examples for this data is user data, signature
keys, signature certificates (pseudo-)random number generation and communica-
tion data (commands, messages, etc.). Typically these data are indistinguishable
without the respective context that is given by the communication protocol or by
the structure of the exchanged data.

17.12.2004 47 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

There is no obvious reason not to represent different data by different abstract
datatypes, while the context is clear. But as described in 5.3, the security prin-
ciples require that the private key that is stored on the card is not compromised.
Attacks on the confidentiality of the private key, that are based on the permuta-
tion of signature keys and random numbers, cannot not be modeled by different
datatypes. This is the reason why all relevant data is collected in an abstract and
unstructured datatypmformation in [13].

Further aspects of the visibility of threats that arise in the context of the deter-
mination of the security architecture and in the context of the description of the
(modul-) interfaces are picked up in the examples in the following sections. It
should be emphasized that well defined formal theories constitute the grounding
for meaningful formal security models. Typically, the security properties as well
as the security features are formulated on the basis of the same theory (see figure
5.1). Because of the fact that these theories have a wide influence they should be
formulated carefully.

| Security Features satisfies - Security Properties
uses- L “lses
BN PA

Figure 5.1: Typical basic structure of a formal security model

5.3 Security Properties

As explained in chapter 3.4.2, the security properties represent the part of the
formal security model that has to be in accordance with the security principles of
the TOE security policy. The functional requirements have a wide influence on
the character of the formal security model. They determine the basic elements and
the modeling concepts that are used. The design of the formal security properties
should reach, whenever possible, a complete coverage of the security principles
that are described in the functional requirements.

Example. A number of functional requirements are derived from the security ob-
jectives of the described signature cards. A selection of these requirements is
described here using the notation given in [12]:

48 /117 17.12.2004

Guideline in the scope of ITSEC and Common Criteria Version: 1.1

. -
Devlopment and Evaluation of Formal Security Policy Models)

The signature card should prevent any kind of extraction of the card- (S01.1)
holder’s secret key from the ICC.

The signature card shall prevent any kind of modification of the card- (S01.2)
holder’s secret key in the ICC.

The signature card shall allow the use of the digital signature function (S02.1)
only to the cardholder after successful authentication by knowledge.

Successive authentication failures will be interpreted as an attempted (502.2)
unauthorized access and will disable the signature function.

The authentication data is stored in the signature card and shall not (502.3)
be disclosed.

The signature card provides a function to generate a SigG digital sig- (S07.1)

nature for the data presented by the IFD using the SigG private sig-

nature key of the card holder stored in the signature card.

The function to generate a SigG digital signature works in a way that (S07.2)
other individuals not possessing the SigG private signature key of the

cardholder cannot generate the signature.

An analysis of the mentioned requirements results in the following provisions
for the development of a formal security model:

The prevention of the extraction of the secret signature key (SO1.1) and
the disclosure of the authentication data (SO2.3) is realized by the require-
ments on the design of the interfaces of the signature card (input- and output
streams).

The prevention of modifications of the secret key (SO2.1) is modeled by data
encapsulation and access control mechanisms.

In order to allow the application of the signature functionality only in case
of a successful authentication (SO2.1), there is a modification of access
rights modeled that depends on external events.

To allow for a (permanent) lock of the signature functionality (SO2.2) per-
sistent states of the operating system are modeled.

The necessity of the ownership of the signature key in order to generate
authentic signatures (SQO7.2) is realized in the model with the help of the
subjects and their corresponding (mutable) knowledge.

The requirements analysis that has begun in the example is common for the
design of formal security models. It provides the essential notions, elements and
structures for the modeling.

17.12.2004 49 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

After the requirement analysis has been carried out it can be decided whether
an already known generic formal security model can be used. Concerning the
requirements this is often the case in the area of access- and information flow
control. A comparative description of such generic security models is given in
chapter 6.

The requirements analysis often has a strong influence as illustrated with the
help of an exemplary modeling.

Example. A careful analysis of the mentioned security requirements concludes
that the requirement SO7.2 cannot be influenced by the signature card during its
operation. It formulates conditions for the selection and implementation of the
cryptographic algorithms and is therefore actually not part of the security policy
of the TOE. Nevertheless SO7.2 has a wide influence on the formal security model
because of the fact that such requirements concerning the properties of certain
algorithms have to be axiomatized conveniently.

As already mentioned above a necessary prerequisite for such a model is
the possibility to specify the subjects and their associated (mutable) knowledge.
For this the unstructured datatypgubject is introduced. With the help of
the functionlearns and the predicateknows and inferable (as well as
some additional help functions and predicates) the théldnformation IS
defined. It allows for the specification of the requirement SO7.2 as an axiom
(cp.TSignature in section 5.5.2):

inferableWithout(i,sig(i,sk),sk)
-> inferable(i,sk)

The descriptive interpretation of this axioms expresses that the deducibility of the
signature keysk is a necessary prerequisite for the deducibility (generation) of
the signed documeisig(i,sk) . This descriptive interpretation corresponds

to the semantics of the formal specification if and only if the definition of the used
predicates really represent this view. We emphasize on this issue with respect to
the theoryTInformation which is partly presented in the sequel.

THEORY TInformation

PURPOSE
"The concept of information”

USING TSubject

TYPES

/* Pieces of information (messages):
This is the main type of this model.
Any information exchanged between the subjects of this
model has the type information (or a type derived from
type information). This can be documents to be signed,

*
*
*
*

50/117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria

Version: 1.1

* keys, commands, certificates etc.
*/
information

FUNCTIONS
/* \1 enhances its knowledge with \2 */
learns: subject, information -> subject;

[.]

PREDICATES
/* \1 holds (knows or has in its store) \2 */
knows : subject, information;

/* The predicate 'has’ is similar to 'knows'.

* \1 is a place that holds information \2.

* The difference is the following:

* While knows is intended to model the fact that a subject
* can 'compute’ or deduce the information from what he has
* learned, ’'has’ also is valid if an information can only

* be obtained by applying some infeasable methods like

* breaking secure encryptions.

*/

has: subject, information;

/*\1 and \2 are the same person/thing, but they may be

* different in what they know and their internal state but

* have the same identity. \1 and \2 can be regarded as the
* same subject watched at different points of time.

*/

identical: subject, subject;

(-]

/* Information \1 can be used to infer \2, more precisely:
* there is a subject that knows \2 after learning \1 even
* though it did not know \2 before.

*
inferable: information, information;

/* Information \1 can be used to infer \2 even if \3 is unknown,
* more precisely: there is a subject that knows \2 after
* learning \1 even though it did not know \2 AND \3 before.
*
/
inferableWithout: information, information, information

[-]
VARS
i,j,k: information;
s,t,u: subject

AXIOMS

/* Identity is an equivalence relation */
identical(s,s);

identical(s,t) and identical(t,u) -> identical(s,u);
identical(s,t) -> identical(t,s);

(-]

/* Learning has no effects on the Identity */

17.12.2004

51/117

BS

\ d Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

identical(s,learns(s,i));

(-]

/* knows is stronger then has

* (a subject 'has’ what it 'knows’).
*

knows(s,i) -> has(s,i);

(-]

[* Definition of inferable */

/* j is inferable from i, i.e. there is some subject

* who doesn’t has j but can deduce | after learning i
*

inferable(i,j) <->

EX s: NOT has(s,j)) AND knows(learns(s,i),j);

/* Definition of inferableWithout */

/* j is inferable from i without using k, i.e. there is some subject
* who neither has j nor k but can deduce j after learning i

*

inferableWithout(i,j,k) <->

EX s: NOT has(s,j) AND NOT has(s,k) AND knows(learns(s,i),j);

(-]

THEORYEND

A basis for the interpretation [4, Abs. E[456].3] as well as for the rationale [1,
Element ADV_SPM.3.3C] are the modeling concepts as they are identified in the
requirements analysis phase. On the highest level of the modeling we first have to
specify the security properties. These security properties altogether are regarded
as the security principles. In using generic models the security properties result
from an appropriate instantiation of the generic properties (see chapter 6).

Example. The security properties of smartcards are formulated in a temporal
logic specification where the interfacesannelln andchannelOut belong
to the standard interfaces of smartcards.

The state space of the temporal logic specification consists of specific secrets
belonging to signature cards, the interface variables and other internal card data.
Especially the private keskCh and the authentication datainCh of the card
owner belong to this data.

Because of the technical standards for the communication between terminal
and smartcards there is always an unambiguous mapping between the reaction of
the signature card and a command which was sent before. Therefore, the formal
security properties are in principle based on a simple concept: If the card gives
a certain response on a command, then this response is justified by the internal
state of the smartcard.

The formulation of the security properties often requires the inclusion of the
sequence of transactions that led to the current state. As a consequence of this the

52 /117 17.12.2004

_ -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

formalization must be able to observe all the relevant parts of the complete history
of the current state. The access to this history is technically realized with the help
of the state variablehannelOutRawH . This variable stores all the output of
the smartcard since its initialization.

/**/

[* SECURITY PRINCIPLES */

/**/

[* SO1.1 */
[NOT minferable(channelOut,def(skCh))

[* SO1.2 */
[skCh = skCh’

[* SO2.1 */
[ALL j:
minferableWithout(channelOut,
def(sig(j,skCh),def(skCh))
-> histAuthUser(channelOutRawH)

[* S02.2 *
[first(channelOutRawH)
= value(answerAuthSuccess) AND
NOT channelOutRawH = nil
-> NOT maxFailuresExceeded(rest(channelOutRawH))

[* SO2.3*
[NOT isSecretinferable(kindPIN,channelOut)

[* SO7.1 */

[l validpair(isk,ipk) AND
NOT channelOut’ = channelOut AND
minferable(channelOut’,def(sig(j,isk)),def(isk))
-> isSign(thelfdCommand(channelinDecoded))

5.4 Security Features

As described in chapter 3.4.2 the security properties represent that part of a se-
curity model that has to correspond to the security features of the TOE-security
policy. In order to prove the correspondence between the formal security model

17.12.2004 53/117

BS
0

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

and the functional specification it is recommended to adjust the specification of
the security features with respect to the defined procedures and interfaces of the
security functions. If a known generic security model (cp. chapter 6) is used, then
it must be decided how to instantiate this model in order to accommodate this
aspect.

Example. The security features of signature cards are mainly based on the con-
cept of a state machine (Modueitomaton), which controls the access to data
stored on the smartcard that have to be protected. The data itself is encapsu-
lated in self-contained module®d ...013). Further modules are used for the
internal communicationataLink) between modules and for the input-/output-
interfaces SecChannelln and SecChannelOut). All the modules are then
composed to the specificatid@C_Features (the remaining modules are ex-
plained in the sequel):

’ ICC_Environment ‘

’ I1CC_Assumption ‘ ’ ICC_Features ‘

DataLink | SecChannelln]
Automaton | SecChannelOut|

The formal specification of the security features should contain all information
related to the validity of the security properties of the TOE and of the environment.
It has to be paid special attention to the visibility of threats which challenge the
validity of the security properties. If the security features are based on the concept
of state machines as it is the case in our example, then we can characterize the
threats in a direct manner with the help of the unsafe states of the corresponding
state machine.

Example. The modulAutomaton specifies a loop for the execution of certain
commands:

WHILE true DO BEGIN
call(bckSecChannelin);
call(bckObjects);

54 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

getEvent;

stateChange;

call(bckObjectReset);

call(bckSecChannelOut)
END

In the procedurestateChange the state changes of the state machine are
specified. It has to be guaranteed that we can reach only safe state this way. An
unsafe state which is not reachable in this model is, for example, the enabling
of the signature function without a complete user authentication. The function
nextstate is used for the specification of the procedstateChange . It
determines the next state with the help of the current state and the current event
(which is computed bgetEvent). All allowed state changes are coded in a two
dimensional table (matrix) (cp. [12, Tab. 12]).

Often assumptions about the security environment of the TOE are needed in
the proof of the validity of the security properties. These assumptions are explic-
itly specified in the formal security model. As for confidentiality it is usually the
case that data that has to be protected is not known in the environment of the TOE.

Example. The private signature key is known to the outside of the signature card
only if it can be extracted from the output of the signature card. Therefore, it can
be assumed that the private signature key is never contained in the input for the
signature card. This assumption is essential for the proof of the non-inferability
of the private key based on the output of the signature card (SO1.1). Therefore, it
is specified explicitly in the modiCC_Assumption

These restrictions are connected to the input channel of the signature card
by the composition diCC_Assumption andICC_Features to the modul
ICCEnvironment

We recommend to specify such assumptions on the security environment with
great care. If these assumptions are not adequate, then the significance of the
proofs of the validity of the security properties is compromised.

5.5 Proofs of Properties and Consistency

The preparation of a formal security model is not yet completed unless the spec-
ification of the security properties and the security features together with their
corresponding interpretation (ITSEC) and rationale (CC) is finalized. We have al-
ready pointed out the necessity to verify the model (cp. section 3.4.4) on different
places in the preceding chapters. The proof of the properties of such a model and

17.12.2004 55/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

the proof of its consistency are necessary for the significance of a formal secu-
rity model. Only the accuracy of a mathematical proof allows one to deduce the
effectiveness of the modeled security policy.

5.5.1 Security Proofs

The proofs of the validity of the security properties represent the characteristic
feature of formal security models. Together with the (informal) correspondence
proof between the security properties and the security principles and security fea
tures, they guarantee the desired quality of the specified security policy of the
TOE.

In general it is recommended to undertake the required proofs with the help
of a formal development tool that supports the proving process. Especially the
generation of the proof obligations that arise from the specification of the security
properties should be carried out automatically by such a tool. The Verification
Support Environment (VSE) tool meets these requirements.

The concrete proof obligations differ in general. They depend strongly on
the chosen specification formalism. Often the concept of mathematical induction
is used in such proofs. This holds especially for generic security models as de-
scribed in chapter 6. The basis for such proofs are recursive datatype definitions in
first-order logic specifications and timed state sequences in temporal logic speci-
fications.

Example. In order to prove that the private key is not inferable from the output
of the signature card we have to analyze all possible state sequences. It has to
be proved that the validity of the considered security property hold initially and is
preserved during state transitions.

Often first attempts to prove such properties do not succeed since the specifica-
tion is erroneous. After changing the specification a new proof attempt is started.
The correlation between an (abortive) verification and the specification results in
the elimination of errors in the security model.

But not only abortive proof attempts give rise to errors in the specification. In
particular rather quick proof attempts with short or trivial proof trees point to gaps
in the specification.

Example. One of the security principles of signature cards says that the output of
the so-calleDisplayMessage may only occur under certain circumstances.
During the first proof attempt the validity of the corresponding security property
was established quickly. The reason in this case was th&didgayMessage

was never displayed so that the security property was vacuously true. It turned out

56 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

that the conditions for the output BisplayMessage were not sufficient. The
reason for the insufficient specified behavior was finally found in an error of the
access matrix that refuses the (reading) access to the siiggdayMessage

Negative proof attempts often follow from errors in the security policy itself.
The specification of the security model coincides with the intention of the devel-
oper, but the security properties cannot be established using the security features
as input. In these cases we can see that the verification of formal models is valu-
able, since this kind of errors is rather hard to detect using conventional methods.

Example. Initially the proof of the security properties that corresponds to SO2.2
could not be found. A careful analysis of the proof attempt revealed the fact that
the locking of the signature card that has to happen after several unsuccessful
authentication attempts was not effective. This locking mechanism did not behave
as it was intended in the security policy. An attacker could perform an arbitrary
number of authentication attempts. After it has been clarified why the proof at-
tempt failed, this serious error, that remained undetected for a long time, was
corrected.

5.5.2 Consistency Proof

The notion of consistence and the difficulty in proving it are already mentioned in
section 4. The explanations that are given there will be analyzed in detail in this
chapter and we will give some illustrating examples.

The notion of consistency

Specifications are independent from their representation. They may be given in a
textual representation as well as in a graphical representation (as in VSE). They
are represented Isyntacticalobjects.Semanticallythey describe certain mathe-
matical structures (models). Using an axiomatic methodology it is often intended
that several different structures represent possible models. Here we give atten-
tion to the question whether such a syntactical description is sensible, i.e. whether
there is at least one model. But the pure existence of such a model does not mean
that it covers the intention of the person that has prepared the specification.

First a specification has to lsyntactically admissible.e. it has to obey cer-
tain (syntactical) requirements. These required (syntactical) properties are always
decidable, i.e. they can be checked with the help of automatic tools. We distin-
guish between the context free analysis of inputs and a so called typecheck. In
the first case it is checked for example whether every left parenthesis is related to
a corresponding right parenthesis whereas in the second case the typecheck does

17.12.2004 571117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

also check the correctness of the number of the arguments as well as the type of
the arguments of a function call. The possibility of a semantical interpretation
and a useful analysis is sometimes connected to the syntactical admissibility. This
is especially the case for description techniques that are restricted to executable
systems. A good example for such description techniques are programming lan-
guages. A syntactically correct Java program is executable and therefore it has
a semantical interpretation. This does not mean that such a progrsefidin

any sense: It can be the case that the execution of the program leads to runtime
errors which stop this execution. But since the description of the program itself is
useful (it can be given a meaning) desired and undesired properties of the program
behavior (runtime) can banalyzedand detected. It is possible to translate such
programs into a logical form. The resulting set of formulas would be consistent.

Concerning logical formalisms the situation is more difficult if the system has
an axiomatic description. It cannot syntactically be examined in general whether
a specification is a useful basis for the proofs of the intended properties. Even if
all the formulasy of a set of formulag™ are well-formed, i.e. they are admissible
syntactical objects, there is the possibility that we can condude ¢ andI”

—. This means thap as well as~¢ arededucibleorm I'. We then call this set of
formulasl’ contradictoryor inconsistent For most of the formalisms this means
that all propositions¢ are deducible. Therefore, it makes no sense to analyze
an inconsistent set of formulas by deducing propositions. Furthermore, it is not
possible to give such an inconsistent set of formuilass mathematical structure
(model) as interpretation.

A set of formulas that isot contradictory (inconsistent) isonsistent Note
that consistency is a notion that is based on a calculus: A contradiction cannot be
deduced The non-existence of models in case of an inconsistent set of formulas
follows from the (assumedjorrectnes®f the used formalism.

It is in general difficult to proof the consistency of a set of formulas if the
corresponding formalism is strong enough as for example first-order logic. It is
neither possible for a constructed but arbitrary set of formiilés decide on a
syntactical basis whether it is consistent nor can it be characterized in a construc-
tive way by finitely many proof obligationA. The following formula would hold
for such proof obligationst’ = ¢ forallp € A < T'is consistent. In general
it is even not possible to generagefficientconditions (proof obligations) which
cover the practically occurring cases approximately. In orderdgethe consis-
tency of a set of formulas with the help of a calculus, we need a more expressive
formalism, which then has to be examined for consistency as well.

One way to prove consistency is to reduce a given axiomatic system descrip-
tion (set of formulas) to formulas of a restricted language. The sentences of this
language are consistent by definition or the prove of the consistency can be carried
out by a syntactical analysis or by proving sufficiency conditions for consistency

58 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

that are easy to establish. During this reduction certain proof obligation have to be
proved. This approach represents a prototypical implementation or the construc-
tion of a model from a logical point of view.

From the existence of a model we can conclude consistency if the underlying
formalism is correct: Assume thatis inconsistent, i.el’ - ¢ andl’ - —p. Since
the calculus is correct we have = ¢ andl’ = —¢, i.e. p as well as—p are a
consequence df. This means that all structure$ that fulfill (all the formulas
of) I do also fulfill o and—p. If such a structure (model) exists then it would
fulfill © as well as~¢ which is excluded by the notion of satisfiability of formulas
(A | o).

The described approach does not contradict the remarks of the last paragraph.
The model preparation process which results in proof obligations requires cre-
ativity and it cannot uniformly, i.e. according to certain rules, be executed. We
first take a look at specifications for which consistency can be established easily.
Afterwards in section 5.5.2 we explain the methodology with the help of some
examples.

Consistent specifications

For certain restricted sets of formulas consistency is a priori given. For example
pure systems of equatio(rso in-equations) andorn formulagqrules and facts) as
they are the basis of logic programming. In short the reason for their consistency
comes from their axiomatizations since they contain only positive information.

Further typical examples for consistent sets of formulas that are examined in
more detail in this work, are the axiom schemata which belorfiggady generated
datatypes Such a datatype is given by constructor symbols, selector symbols
and optionally by some test predicates. We can add uniformly axioms to these
syntactical constituents such that there is only one model up to isomorphism in
which every element is given by one constructor term. This representation is also
unique, i.e. every element of the model is relatedxactly oneconstructor term.

The basic datatyp®AT (natural numbers) is defined in VSE by the following
specification with the namEATBASIC

BASIC NATBASIC
NAT = NULL | SUCC (PRED : NAT)
BASICEND

The constructor symbols aNULL (the symbol for the number zero) asdJCC
(the symbol for the successor function).
PREDis used as selector symbol (for the predecessor function). In the specifi-
cation above the charactet ™ is used to designate@ase distinctionTherefore,
the informal reading of the specification is as follovisrery natural number is

17.12.2004 59 /117

\ i Devlopment and Evaluation of Formal Security Policy Models

% Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

either zero or it is the successor of a natural number, which itself can be selected
by the predecessor functioRormally this is expressed by the following axioms:

(x = NULL) OR (x = SUCC(y))
NOT (NULL = SUCC(x))
PRED(SUCC(x)) = x

The datatype of the natural numbers igaursiveone since the argument of the
constructor symboSUCCis again of typeNAT. This way infinitely many terms
can be constructed and especially terms of the following structure:

NULL, SUCC(NULL), SUCC(SUCC(NULL)), ...

These variable free terms correspond uniquely to the elements of so wated
generatedmodels which do always exist for this kind of specification. Further-
more, from a logical point of view they are indistinguishable (isomorphic).

The construction of complex theories as for example the axiomatic set theory
in mathematics is carried out inter alia by extending given structures hyetfie
nition of new concepts. Here certgminciples of definitiorare used. In simple
casesquationor equivalencesre used, where the defined objects do not occur
on the right hand side. This way it is assured that the new objectsedkelefined
(existence and uniqueness) with respect to the objects on the right hand side.

This simple way does not suffice for the considered specifications as for exam-
ple the natural number&fecursiveequations (or equivalences) are needed. Here
the symbol to be defined also occurs on the right hand side of the equation or
equivalence. In order to use this more powerful definition principle we have to
obey additional conditions to avoid circular definitions and we have to guarantee
the existence and the uniqueness of these extensions. In the context of consistency
of specifications only the question whether such an extension exists is relevant.

The following axioms describe additional functions and predicates as an exten-
sion of the datatypBASICNATas it is defined above (we consider only addition
(_ + _),subtraction (- _) and multiplication (* _)):

THEORY NATURAL
USING NATBASIC

FUNCTIONS

_+ ., _-_,_*_, _DIv_

_ MOD _ : NAT, NAT -> NAT
PREDICATES

< _,_ <= _,_>_,_>= _1:NAT, NAT
VARS

X, Y, Z : NAT

60/ 117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models ' |
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

AXIOMS
X + NULL = x;
X + SUCC(y) = SUCC(x + vy);
X - NULL = x;
X - SUCC(y) = PRED(x - vy);
X * NULL = NULL;
X * SUCC(y) = (x *y) + X
[...]

THEORYEND

This specification satisfies two additional conditions:

e For every caseNULL | SUCC(y)) of the structure of the second argu-
ment there is exactly one equation.

e The second argument of the function on the right hand side (the terty
IS in termini of the above given term structuessthan the corresponding
argument of the left hand side of the equation (the telf®JCC(y) ™).

If these properties are guaranteed then there is a unique extension of the (term gen-
erated) models of the original specification. In particular consistency is preserved
this way.

The second property cannot be established in general by a pure syntactical
inspection. In fact propositions (proof obligations) are generated whose validity
(in term generated models) guarantees the reduction of term complexity. From an
operational perspective of the function definition as a (functional) program this
corresponds to &éermination proof Additionally such an admissible specifica-
tion provides an appropriate (consistentgjuction principlewhich can be used to
prove properties of the new defined functions.

The presented method together with an appropriate syntactical support can be
used to introduce user defined data structures in a consistent way. This is presented
in connection with an example in more detail below.

Description techniques which are based on the explicit declaratictats
transition systemsre somewhat special. Besides the syntactical admissibility
of inputs, which is often carried out graphically, there are usually no additional
actions needed in order to assure consistency, since a model is given directly.
These techniques are referred taasdel basedechniques.

A similar situation is given in case of state oriented axiomatic approaches
which are the basis for VSE. Because of a restricted specification technique — one
that describes basically the possible state transitions (actions) of a system — the
consistency only depends on the initial states that have to satisfy the specification.
This result is based on the fact that inconsistent action specifications can never be
executed.

17.12.2004 61/117

BS

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Proof of consistency by modeling

If the originally given specification (starting specification) cannot be proven di-
rectly to be consistent (by verifying the above given principles), it remains the
alternative of a stepwise implementation (refinement). This is done as long as for
every branch of the modular development a specification is reached that is guar-
anteed to be consistent. This process can be regardeddaingsince in every
such step the correctness has to be proven. All the correctness proofs together
with the above discussed construction principles, that are based on the starting
specification, constitute the consistency proof.

This methodology is described with the help of an example that is taken from
the formal security model of a signature card. The following commented specifi-
cation (VSE-theory) describes the eventlod generation of a signature

THEORY TSignature
PURPOSE
"Signatures and keys"
USING TClassification /* includes TInformation */
FUNCTIONS
[* The signature function:
The result is \1 signed with key \2 */
sig : information, information -> information;
[...]
/* The key generation functions:
The result is the \1-th secret/public key. */
skeygen: counter -> information;
pkeygen: counter -> information

PREDICATES
/* Valid pair of private and secret key */
validpair : information, information;
[* Signature verification: t, iff signature
is generated with corresponding secret key */
validSig: information, information;

[...]
VARS
i,j,k,sk,pk : information;
s . subject;
Cc . counter,;

[.]

AXIOMS

[..]

/* If a piece of information has been signed, the

62 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

original information still can be inferred from it. */
validpair(sk,pk) AND knows(s,sig(i,sk)) -> knows(s,i);

/* If we have a piece of information and a key we
also know the signed piece of information. */
knows(s,i) and knows(s,sk) -> knows(s,sig(i,sk));

/* Signed documents are different if the original
documents are different */
sig(i,sk) = sig(j,sk) -> i = |;

/* Signing a document never generates the secret key */
validpair(sk,pk) -> sig(i,sk) /= sk;

/* Signatures must be different from the signed document */
validpair(sk,pk) -> sig(i,sk) /= i;

[..]

/* Signing does not add further information */
validpair(sk,pk) AND inferable(sig(i,sk),j)
-> inferable(i,j);

[.]

SATISFIES SSignature
THEORYEND

The axiomatization uses the thednformationwhich is under-specified but
complete. It does not obey a given principle and among others it contains some
characteristics of the signature function as for instance injectivity and the possi-
bility to gain knowledge about signed documents. These characteristics are used
later to prove the validity of security properties. For example it is assumed that it
is impossible to generate signatures accidently and without the knowledge of the
corresponding key. The mentioned axioms arequoistructiveas opposed to the
above given function definitions. Here we concentratevbatthe system should
do and nohowit is done. In avoiding unnecessary details the proofs of security
properties become drastically simpler. Practically they become possible only by
these simplifications.

Otherwise specifications as those mentioned above hold in particular the dan-
ger of being inconsistent. Therefore, the demand for consistency proofs in the
ITSEC and the CC is fully justified. In cases as considered here such a proof
requires creativity since there is no general (uniform) schema that can be used.

In order to give a computational model we first have to concretize the data
structure of informations. The following specification introduces a freely gener-
ated data typéinformation in a special syntax. A case distinction results

17.12.2004 63 /117

BS

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

in six cases where constructors@sey (public key) and the corresponding se-
lectors appKeyld are available. The externally defined data tgpenter is

used. Thus a public key mainly consists of a data object of tgpmter . The

last four cases reveal that the used data type is recursive, since the first argument of
the constructor term is again of typeformation . After the keywordWITH

test predicates are introduced which distinguish between the six possible cases.

BASIC Sinformation
USING TConstWord;
TInformation

iinformation =

[* distinguished information */
dinfo(infoword : constWord) WITH isDinfo |

/* public keys */
pKey(pKeyld : counter) WITH isPKey |

/* implements sig(i, dinfo(sKey)) */
sInfo(theSInfo : iinformation) WITH isSinfo |

/* implements secureMsgEncode(pKey(cNull), dinfo(sKsig), i).
pKey(cSucc(cNull)) and dinfo(sKkdec) are necessary
to obtain i from this information. */

scinfo(theSCinfo : iinformation) WITH isSCinfo |

[* implements certlccKey(information, counter) */
iKey(iKeyInfo : iinformation, iKeyld : counter)
WITH islKey |

/* implements ifdDoAuthChange(il,i2) as info pair */
pinfo(fstinfo : iinformation, sndinfo : iinformation)
WITH isPInfo
BASICEND

Now we can constructively define the signing by a program based on the freely
generated and therefore consistent data structure. The program runs its computa-
tion on the basis of structures of typeformation . It uses the constructor
dinfo to guarantee that a secret signature key is given as a second argument of
the function. The computation of the output of tyjpg#ormation uses the
constructoisinfo which was introduced in the third case above. The remaining
kinds of information are only relevant for other contexts that will not be consid-
ered here.

FUNCTION i_sig

64 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

PARAMS infl, inf2 : IN iinformation
RESULT iinformation
BODY
IF inf2 = dInfo(sigSk)
THEN infl := siInfo(infl)
Fl;
RETURN infl
FUNCTIONEND

As discussed above programs or (admissible) function definiibwayspre-
serve the consistency of abstract data types that are used for their computations;
asiinformation here. But axiomatic provisions are connected with the ab-
stract signature functiosig , that is implemented by the progransig . These
provisions have to be proved to be properties (proof obligations) of the program
i_sig . Anaxiom concerningig is:

validpair(sk,pk) -> sig(i,sk) /= sk;

The corresponding property to be proved is given in dynamic logic by the follow-
ing formula:

<i_validpair#(inf, infO, i_validpair-res)>
i_validpair-res = t

-> NOT <i_sig#(infl, inf, i_sig-res)>
i_sig-res = inf

In dynamic logic programs occur as constituents of formulaslst a program
then the formula< © > ¢ says the following:the programz terminates and
afterwards (in the final state) the formulaholds Besides sig thereis another
programi_validpair used in the proof obligation above, that is also a part
of the modeling since it represents the implementationabidpair . Thus
the reading of the proof obligation is as follow$:the programi_valipair
terminates with outpit (true), then it cannot be the case that the progtiasig
terminates with the outputsig-res = inf

The proof of consistency by modeling is a combination of purely creative steps
concerning the invention of implementations on the one hand and the proving of
propositions in a calculus that are generated (automatically) by the systems as
correctness condition, on the other hand.

Methodology of consistency proofs

While reading the remarks made above the following question could arise: If a
modeling (implementation) is needed in every case, why don’t we use specifica-
tions that are guaranteed to be consistent right from the start? Such an approach

17.12.2004 65/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

is of coursetechnicallypossible. But there are serious objections against such a
method.

First, as already indicated, there is a need foaebstractand often noton-
structivelevel as starting point for the requirements engineering, as the theory
TSignature in our example. This abstract level should always exist as a spec-
ification. It just remains the question of tieeder. Should we construct the ab-
stract level first and prove the consistency hereafter or should these properties
be extracted from a complex (computational) model that was constructed step by
step?

In the field of the formal program development, there is made a good case for
the first (top-down) method. In the context of a formal requirements engineering
a stableabstract specification should be constructed that needs several iterations
in general. Here prevalent application issues should not be mixed with aspects of
the realization. In this context it must be pointed out that the drafted model above
is only one of a number of possible models that can differ significantly from each
other.

Not always but in many cases a model based thinking at an early stage can
mislead: One is geared to the contingencies of certain models. In mathematics
there was a long abstraction process, that was accompanied by many brilliant
researchers, to get the "right™ abstractions (of for example groups, rings and
fields).

The top-down approach fits even better to many process models of software
engineering. If in particular a development has to be carried out according to level
E6 (ITSEC) respectively EAL7 (CC) the modeling process can partly take place
during the required formal refinement to an high level design (ITSEC) respectively
to a functional specification (CC). This refinement step is part of the complete
development and does not merely aim at the consistency proof.

But it should be noted that one might run into problems if consistency proofs
were neglected. If inconsistencies remain undetected for a long time, big parts of
the proofs of the security properties must be reestablished since as the case may be
these inconsistencies result in changes on basic parts of the formal specification.

66 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Chapter 6

Known Formal Security Models

Security policies that are based on the provision of security levels are called multi-
level security policies oMLS policiesfor short. They are used both in systems
where humans process information and in computer systems. In MLS policies,
the different components of a system and perhaps of the system environment are
assigned security levels. Often, a distinction is made between aciibjectdike

e.g. processes or users, and paseiyectslike e.g. files. This class of security
policies can be used to define requirements with respect todwstfidentiality
andintegrity.

MLS policies are not restricted to linearly ordered security levels as they are
frequently used in the military domain e.gnclassifiegd secret top-secret It is
also possible to use partial orders. The underlying mathematical structure is that of
a lattice! Alternatively, MLS policies can be expressed by a relation determining
which subjects and objects may be influenced by which other subjects and objects.
Such relations are calladterference relation§l8, 19].

In this section a selection of established security models, which formally de-
fine security policies from this class, is described. Because all these security mod-
els are generic a concrete security policy results from instantiating a méael.
obtain a formal security model in the sense of ITSEC or CC such an instantiation
should be formal and the informal interpretation should refer to this instantiated
model.For each of the models that are described here we give the elements of an
instantiation. Furthermore, we give the assumptions of these models for the oper-
ating environment and known limitations of, and problems with, these models.

In particularGoguen and Meseguers’s NoninterferertbeBell and La Padula
mode] and theBiba modelare described. While noninterference allows for the
definition of confidentiality and integrity requirements the Bell and La Padula

A lattice (L, \/, /\) consists of a domaih and two binary operationg and that, for every
two elements fronl., determine the smallest upper bound, the supremum, and the greatest lower
bound, the infimum, respectively [24].

17.12.2004 67 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

model is restricted to confidentiality and the Biba model to integrity properties.
Technically, the two latter models can be considered as special cases of nonin-
terference. Their popularity can be explained by the fact that they can be imple-
mented using reference monitors. Due to their fixed concrete mechanism, i.e. that
of a reference monitor, they only provide a restricted framework for the abstract
definition of security properties. On the other hand, noninterference can be under-
stood as a definition of security. Whereas Bell/La Padula and Biba are based on
access control, noninterference is based on the control of information flow.

From the variety of variants of these security models, in the following we de-
scribe one variant and briefly discuss alternatives to the respective concrete vari-
ant. All models are based on state machines. The underlying machine models are
slightly different and are, therefore, introduced at the beginning of each section.
Based on this, the respective security model is then described and techniques for
simplifying the proof of security are discussed. Furthermore, the elements of a
formal instantiation are explained and the assumptions of these models for the
operating environment and known limitations of these models are discussed.

6.1 Noninterference

For the definition of a security policy it is necessary to identify the components of

a system like e.g. data, processes or interfaces, and of the system'’s environment
like e.g. users or user groups. The notion afoanainis used in order to abstract

from the concrete components. For instance, a domain can be a single user or a
file as well as a group of users and files.

The notion ofinterference which has been introduced to the security com-
munity by Goguen and Meseguer, refers to the interference of one domain by
another one. Based on the complementary notion, i.e. thabointerference
fixing which domains should not be interfered with by other domains, security
policies both for confidentiality and integrity can be defined. A framework in
which such security policies can be defined was first suggested by Goguen and
Meseguer in [18, 19]. This framework was later modified, extended, and general-
ized, cf. [41, 43, 30, 39, 34, 35, 46, 40]. The variant that we describe here follows
that of [41], an approach which allows for the generalization to non-transitive def-
initions of interference and, therefore, is not restricted to MLS policies, which are
the focus of this chapter.

In order to define a security policy with the approach of noninterference we
first need to determine the system actions and the domains, and each action needs
to be assigned a domain. Givingn@ninterference relationt> defines which
domains should not be interfered with by others. In case the complemagit
~+ is transitivethe assignment of domains together with the presentation of the

68 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

noninterference relation corresponds to the security levels that are usually given
for MLS policies.

The impossibility of an interference is expressed by the statement that for two
domainsd andd’ with d’ -4 d, the domaind cannot distinguish the case in which
d' has taken an action from the case in which it has not. A system is secure if there
is no unauthorized interference between domains accordiiig to

Security models based on a noninterference relation enjoy a wide spectrum of
possible applications becausach a relation can be used to express requirements
concerning both confidentiality and integrityn case we have definetl 4> d, the
domaind is not allowed to observe the actionsdf(confidentiality) and/’ is not
allowed to influence (integrity). Therefore, noninterference covers both areas of
security for which established and generally usable security models exist.

6.1.1 Definition of the Formal Model

The variant of noninterference described in this section follows Rushby’s presen-
tation in [41]. The approach by Goguen and Meseguer [18, 19] is extended to
cover security policies that are not MLS policies, i.e. security policies in which
the interference relation is not transitive. Moreover, tinevinding theorenthat
is given has less restrictive assumptions when compared to [19]. Unwinding the-
orems simplify the proofs that are necessary to establish noninterference.

The system is modeled by a state machine. To this end % gkstates, a set
A of actions, and a se? of outputs is defined. The allowed system transitions
are modeled by a functiogtep: S x A — S and the outputs by a function
output: S x A — O. stef(s, a) defines the state that is reached by the execution
of actiona € A in states € S andoutput s, a) defines the output that is generated
by the execution ofi in s. The execution of a sequenaeof actions starting in
a states; € S is modeled by a functionun : S x A* — S, which is defined
recursively by the following two equations.

run(s,) = s for the empty sequence
run(s,aoa) = run(stefds,a),)

After giving a setD of security domains, each action is assigned such a domain
by a functiondom : A — D. A noninterference relatior>: D x D is an
irreflexive relation which specifies which domains should not influence others.
The associated reflexive interference relationis obtained by taking the com-
plement, i.e~~= (D x D)\ +. In cased ~ d, thend may be influenced

by d’, in cased’ 4 d it may not. In order to express this formally, a function
purge: (A* x D) — A* is defined which removes all those actions from a se-
guence of actions that should not influence the given domain.

17.12.2004 69 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Definition 1. Letd € D be a domain and € A* a sequence of actions. Then
purgg«, d) is defined recursively by the following equations.

purge(e, d) €
purgga o a,d) = aopurgga,d) in casedoma) ~ d

purgga o a,d) = purgga,d) in casedom(a) + d

The characteristics of noninterference are summarized in Table. 6.1.

S states

S0 initial state S €S

O outputs

A actions e.g.{hin, hout lin, lout}
D domains e.g.{high, low}

dom | domain assignment dom: A — D

A noninterference relation ~+C D x D

output | output function output: S x A — O
step | state transition function step: S xA— S
run execution of action sequencesun: S x A* — S
purge | purge purge: A* x D — A*

Table 6.1: Characteristics of Noninterference

Example 2. Let D = {high, low}, A = {hin, hout lin, lout}, dom hin) = high =
dom(hout), dom(lin) = low = dom(lout), andhigh + low. Thus, there are
four actions that are assigned to two security levels where the low security level
should not be influenced by the high security level. For the sequence of actions
a = (hin, lin, hout lout) we have

purgga,low) = (lin, lout)
purgea, high) = «.

Using thepurgefunction a notion of security is defined.

Definition 3 (Security Property of Noninterference). A system with initial state
so € S is securefor +4: D x D (according to noninterference) if for all€¢ A
and alla € A* the following equation is satisfied.

outputrun(sy,), a) = outpuirun(so, purggc, doma))), a)

70/ 117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Definition 3 formalizes what the notion of security means in the noninterference
approach. Intuitively, a system is considered secure if a domain cannot detect
whether or not an action of another domain that should not influence the former
has been executed. From a technical perspective the output should not change
if all actions that should not be observable (accordingidpare purged from a
sequence of actions.

In order to prove the security of a system according to Definition 3 we need
to consider all possible sequences of actions, i.e. infinitely manwinding the-
oremsare helpful in order to restrict oneself to separate state transitions. In order
to formulate such a theorem several additional definitions are necessary which we
introduce now. These definitions form the basis for the unwinding theorem that
we give at the end of the section.

Definition 4. A family ~ = (~),cp of equivalence relations ovef is called a
view-partitionfor a setD of domains.~ is output consistent for all s, € S and
all a € A we have

gdoT outpui(s, a) = outputt, a) .

If two states are in relation with respect to an output consistent view-partition,
the outputs of all actions from these states are identical.

Example 5. For the choice of an output consistent view-partition there are two
extreme caseSmin= (~min)ucp aANd~ma= (“max)uecp. TWO states are in relation
~min if they are equal, i.e. if

u

~min IS OUtpUt consistent. Sincé is an equivalence relatioRy, is the minimal
view-partition. The maximal output consistent view-partitiop.x is defined as
follows:

s ~maxt = Va € A.dom(a) = u = outpuis,a) = outpult, a) .

The choice of the view-patrtition is of crucial importance for an application of the
unwinding theorem. Itis not clear in general whetheshould be chosen as small
as possible or as large as possible.

Lemma 6. Let -+ be a non-interference relationy/ a system and- an output
consistent view-partition fok/. If for each sequence of actions and for each do-
mainu € D, run(sg,) ~ run(so, purggc, u)), thenM is secure forss (cf. [41]).

17.12.2004 71/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Definition 7. Let M be a system, let- be a view-partition forM/, and let;t> be
a noninterference relation/ locally respects¢ if forall a € A, allu € D, and
all s € S we have

doma) X u = s~ stefds,a).

In this definition~ only occurs on the right hand side of the implication. Thus,
the proof thatM/ locally respectsts is simplified by the choice of the maximal
possible~.

Definition 8. Let M be a system, let be a view-partition for\/, and let;t> be a
noninterference relationV/ is step consistent for all a € A, allu € D, and all
s,t € S we have

s~t = stefs,a)~ stefdt,a) .

In this definition~ occurs both on the right and the left hand side of the implica-
tion. Thus, it cannot be said in general whether the proofihad step consistent
is simplified by a minimal or maximal possible choice~of

The followingunwinding theorenis based on the definitions 4, 7, and 8.

Theorem 9. Let M be a system, let be a view-partition forM/, and let> be a
noninterference relation)/ is secure forts if

1. ~ is output consistent

2. M step consistent, and

3. M locally respectst
(cf. [41)).

6.1.2 Formalization of a Security Policy

Noninterference offers a generic framework for formalizing security policies. In
the preceding section the sgtof states, the initial state,, the setO of outputs,

the setA of actions, the seb of domains, the domain assignmeiaim the output
function output the step functiorstep and the noninterference relatieh were

not further specified. In order to obtain a formal security model according to IT-
SEC or CC these parameters need to be instantiated and the security of the system
needs to be proven for this noninterference relatiBlease note that the state-
ment of the noninterference relation is only one component of this instantiation.
The parameters of noninterference that need to be instantiated are summarized in
Table 6.2. Note that the interference relation{the complement of) should al-

ways be transitive for the variant of noninterference that was presented here, i.e. it
should specify an MLS policy.

72 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

In case one wants to prove the security (with respect to noninterference) using
the unwinding theorem (Theorem 9), an output consistent view-partition needs to
be chosen. In Example 5, two possible view-partitions are presented.

S states

S0 initial state so €S8

O outputs

A actions e.g.{hin, hout lin, lout}
D domains e.g.{high, low}

dom | domain assignment dom: A — D

> noninterference relation C D x D

output | output function output: S x A — O
step | state transition function step: S x A — S

Table 6.2: Parameters of Noninterference

6.1.3 Assumptions about the Operation Environment

For an instantiation of noninterference the parameters need to be defined ade-
quately. In particular, the set needs to include all possible actions, the Set

all possible states, the state transition function should adequately model the func-
tioning of the system, and the output function should allow to distinguish different
outputs of the system.

6.1.4 Known Limitations of the Security Model

The variant that was presented in the preceding section is restricted to transitive
interference relations, i.e. to MLS policies. Furthermore, the underlying machine
model assumes a deterministic system. Both limitations are also limitations of the
original approach in [18, 19].

The specific restriction of information flow between security domains is the
basis for the noninterference approach. A system is considered secure if actions
of certain domains cannot be observed. The variant of noninterference that was
described is restricted to transitive noninterference relations. The transitivity pre-
vents the indirect flow of information from a domainto a domaind, via a third
domain unless the direct flow fromy to ds is also allowed. For MLS policies
this restriction is always respected. For some applications, however, a so-called
downgrading is required which cannot be formalized with a transitive interference
relation. If e.g. a direct flow of information from, to d, is forbidden {; % ds)
but an indirect flow of information via the downgradgris allowed ¢/; ~ ds and

17.12.2004 7317117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

ds ~ d5) then the interference relation is intransitive. Intransitive interference
relations are also needed when cryptographic components are employed so that
confidential data can be sent over publicly accessible networks after having been
encrypted.

This difficulty is discussed extensively by Rushby in [41]. Furthermore, an
approach to handle intransitive interference relations is described. Roscoe and
Goldsmith [40] argue that this approach does not guarantee a sufficient level of
security. They suggest an alternative that builds on a variant of noninterference
described in [39]. This variant differs substantially from the one that has been
described here since it is based on failure divergence semantics.

The state machines used in Section 6.1 are deterministic since identical inputs
(actions) always yield the same outputs. For a generalization of the noninterfer-
ence approach for non-deterministic systems many variants have been introduced.
The common idea of these approaches is that a system is considered secure if from
an actual observation of the system from a domain and the knowledge about the
functioning of the system, only a set of possible system traces can be deduced,
and this set is too big to deduce confidential information from it. The different
approaches differ from each other according to the criterion for this set to be big
enough where most of the generalizations of noninterference for non-deterministic
systems ar@ossibilistiG i.e. they require certain system traces to agree with ac-
tual observations but ignore the probabilities for these. Examples for possibilis-
tic approaches amdondeducibility{43], Restrictivenesi30], Noninferencd37],
Generalized Noninferend&4], and Separability[34]. Uniform frameworks for
the analysis of possibilistic approaches have been introduced in [34, 35, 46, 28].
Unwinding theorems for possibilistic generalizations of noninference have been
given in [20, 42, 36, 29].Probabilistic approachesike e.g. [21], additionally
take into account the probability of different system behaviors. Possibilistic and
probabilistic approaches are contrasted in [32, 33].

Non-deterministic machine models are e.g. needed to describe parallel sys-
tems with asynchronous communication. Furthermore, non-deterministic descrip-
tions are traditionally used in early phases of the formal software development
and the descriptions are then refined stepwise in later phases. For the devel-
opment of secure systems the refinement paradox needs to be considered. If a
non-deterministic description is proven to be secure, this does not imply that a
refinement is also secure. There are two basic reasons for the refinement para-
dox. First, it is possible that an abstract system specification does not provide
the descriptive means to specify some threats. The security of a system with
respect to such threats can only be investigated on a more concrete level of de-
scription. Second, the security of a system can be violated by the restriction of
non-determinism that comes with a refinement. This exclusively occurs in the
generalizations of noninference for non-deterministic systems which have been

74 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

discussed in the preceding paragraph. The difficulty with the refinement paradox

does not occur for the development of safe systems and is, therefore, considered
a reason for the complexity of developing secure systems. For a discussion of the
refinement paradox cf. [25]. Stepwise refinement of complex systems can also

be achieved by a bottom-up approach, i.e. by composition of components. For

the development of secure systems it is of course desirable that the security of
the composed system already follows the security of the components. Of course,
this is only possible for certain preconditions. This problem has been investigated

e.g. in [30, 34, 35, 45].

6.2 Security by Access Control

Security models that are based on access control allow the definition of secu-
rity policies that govern thdirect acces®f active subjects, e.g. persons, to pas-
sive objects, e.g. files. The goal of such a security policy is to protect the con-
tent of objects from unauthorized access without needing to trust in the subjects.
Subjects access objects via a reference monitor which checks for each access re-

&1

Objekte

Figure 6.1: Access Control

quest whether it is allowed according to a security policy (cf. Figure 6.1) and only
grants authorized access. In order to guarantee a security policy using such an
access control scheme, the following prerequisites need to be satisfied.

e CompletenessSubjects access objects that should be protected via the ac-
cess control exclusively.

e Protection: The access control is protected against unallowed changes.

e CorrectnessThe access control is implemented correctly, i.e. it guarantees
the desired security policy.

17.12.2004 7517117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Accesses are partitioned into classes according to access modes so that all accesses
of one class can be handled uniformly by the access control. In the following, we
restrict ourselves to the access modesd andwrite. Additional access modes

like e.g.executaare dealt with by references to the relevant literature where pos-
sible.

Within the access control the check whether an access is allowed is usually
realized with the aid of aaccess control matrix An access control matrix in-
cludes a row for each subject and a column for each object (cf. Figure 6.2). The
entries of the matrix tell which access rights a subject has to an object. A subject
is only allowed to read or write an object if the matrix cell in the intersection of the
subject’s row and the object’s column contains the access neglattor write, re-
spectively. The access matrix in Figure 6.2, e.g., allows for read accessday,
but no write accessAccess control lister capability listsare possible technical
realizations of an access matrix, cf. [44].

objects | ... | o,
subjects
S; ... | read

Figure 6.2: Access Control Matrix

Different security models differ in the way how the access control matrix may
be initialized, whether or not it may be modified, and if it may be modified which
modifications are allowed. There are two fundamental classes of security models
based on access contréliscretionary access contralllows for subjects to dele-
gate their access rights for objects they own to other subjects. Thus, the subjects
are responsible for a controlled passing on of rights. Therefore, discretionary
access control necessitates trusting the subjects to pass on their rights to other
subjects that exercise these rights in a trustworthy way. In computer systems it
is difficult to justify this trust. If a subject passes on a right to a program that
it starts, the rights that have been passed on can be abused if the program is a
Trojan horse (like, e.g., a computer virus). Thus, security models based on a dis-
cretionary access control do not offer protection against such attacks, cf. [33]. In
contrastmandatory access contrdioes not allow a delegation of access rights.

It, therefore, offers a better protection against Trojan horses.

76 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

In the following we describe two security models, the Bell/La Padula model
and the Biba model, that are based on mandatory access control. The two mod-
els are duals, the exact relationship is described in Section 6.3. Because of this
relationship similar variants can be built. For the purpose of illustrating the vari-
ous variants we will describe a variant of Bell/La Padula that allows for dynamic
changes of the access control matrix in Section 6.2.1, and a variant of Biba that al-
lows for less changes in Section 6.2.2. With the relationship described in Section
6.3 each variant can easily be adapted to the respective other model.

6.2.1 Bell/lLaPadula

The model by Bell and La Padula [14, 15, 16], abbreviate@bl in the follow-

ing, allows for the definition of security policies that govern the access by active
subjects like, e.g., processes, to passive objects like, e.g., files. The goal of such
a security policy is to protect the content of the objects from forbidden accesses
without having to trust the subjects. Starting with [16], several different vari-
ants of BLP have been developed, cf. [33]. The variant that we describe here is a
simplification relative to the original model and follows [32].

As described above, the access control in BLP is based on reference moni-
tors. Accordingly, the three prerequisites completeness, protection, and correct-
ness need to be guaranteed. The access control matrix can be changed dynami-
cally starting from an initial state in the variant we describe. Which states of the
matrix are admissible and which are not is expressed by two propertiesinmhe
ple security propertyequires that subjects can only read objects which have the
same or a lower confidentiality level. Copying data from one object into another
one with a lower confidentiality level, i.e. a forbidden downgrading of confiden-
tial information, is prevented by theproperty (pronounced “star property”). In
BLP, a state is only considered secure if both the simple security property and the
*-property are satisfied. The combination of both properties guarantees that sub-
jects only get to know the content of objects that are assigned the same or a lower
confidentiality level.

In contrast to earlier approaches, e.g. the Lampson Protection Model [27], in
which the allowed changes of the access control matrix were defined by a set of
rules, in BLP the subjects and objects are assigned confidentiality levels. This
approach allows one to prove rules for changing the matrix correct, as is done,
e.g., in [15].

Definition of the Formal Model

In the following, we describe a definition of a security model according to Bell
and La Padula that is simplified compared to the definition in [16]. Because of this

17.12.2004 771117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

simplification the access control according to BLP can be formalized by using
a single access control matrix. Similar simplifications are made in [32]. Our
simplifications are summarized at the end of this section.

Bell and La Padula model the access control system as a deterministic state
machine. Such a state machine is defined by a tiple,, R, 7') whereV is a set
of statesy, € V an initial state R a set of possible requests, @id (VxR) — V
a state-transition function that transitions the system from one state into another
one according to a request. The states of the machine will be described in more
detail below.

Subjects and objects are modeled by setand O. Subjects can, e.g., be
persons or processes. Examples of objects are files or memory areas. A function
Fe- : SUO — L classifies each subject and each object by assigning them a confi-
dentiality level from a sef. Possible confidentiality levels are, e \gnclassified
secret andtop-secret The elements of are partially ordered byg?andL and<
form a latticé. The possible access modes are given by the set{read write}.

The current access rights are fixed in an access matrixS x O — P(A), where

in each cell of the matrix the current set of allowed access modes is entered. The
set{write}, e.g., allows for write access by a subject to an object, but not read
access.

While the setsS, O, L and A are statically fixed for a concrete security policy,
the functionF and the access control matri¥ can be dynamically changed.
States of the access control are, therefore, modeled ag paird/), such that the
set of states for the whole state machinis- (SUO — L) x (S xO — P(A)).

The characteristics of BLP are summarized in Table 6.3.

The simple security property is satisfied if subjects can only read objects that
have the same or a lower confidentiality level. It, therefore, prevents subjects from
adirectread access to objects with a higher confidentiality level.

Definition 10. A state satisfies th&mple security propertif and only if
Vs € S¥Yo € O.reade€ M|s,0] = Fg(o) < Fo(s) .

Thex-property is satisfied if no subject can read an objegith the confiden-
tiality level Fi-(0) and simultaneously write to an objectwith a lower confiden-
tiality level Fo(0") < F(0). Otherwise, the subject could copy the contents of the
objecto with the higher level into an objeet with a lower confidentiality level.

This would make the contents directly readable for other subjects even though

2l.e. < isreflexive §I € L.l < 1), antisymmetric\{l,,l> € L.(I; <lo ANly < 11) = 11 = 1y),
and '[raﬂSitiOﬁ\(ll7 lg, I3 € L(ll <INy < lg) =10 < lg)

3].e. for any two elements, I, € L there exists a lower upper bound, the suprenyifiy, I},
and a greatest lower bound, the infimyxdl,, l>}.

78 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

S | subjects e.9.{s1,82,---,Sm}

O | objects e.g.{01,09,...,0,}

L | confidentiality levels | e.g.{unclassifiedsecret. ..}
< | order overL <C LxL

A | access modes A = {read write}

I~ | classification Fo:SUO — L

M | access matrix M:S%x0O — P(A)

V | states V:(SUO—L)x(Sx0O— P(A))
vy | Initial state v eV

R | requests

T | state-transition function” : V x R — V

Table 6.3: Characteristics of BLP

they have a too low confidentiality level. Because in BLP subjects are not trusted

generally in order to counter insider attacks and Trojan horses, the intended notion
of security can only be reached by a combination of the simple security and the
*-property. Thex-property thus prevents subjects from indirect read access to the

contents of objects with a higher confidentiality level.

Definition 11. A state(F, M) satisfies the-propertyif and only if
Vs € SVo,0 € O.(read € M|s, o] Awrite € M|s,0']) = Fc(0) < Fe(d) .

Remark 12.The following variant of thex-property, which in general is more
restrictive than Definition 11, can often be found in the literature. If subjects have
a local memory, however, which is assigned the same confidentiality level as the
subject itself, then the two variants are equivalent.

Vs € SVo' € O.write € M(s, 0] = Fo(s) < Fe(o)

Because of the modelling as a state machine, an inductive definition of security
is possible.

Definition 13 (Security properties of BLP). A statev = (F¢, M) is secure(ac-
cording to BLP), ifv satisfies both the simple security property andstpeoperty.

A system(V,vg, R, T) is secureif the initial statev, is secure and all states that
are reachable from, via the state-transition functidh are secure, too.

The following theorem suggests a way in which security according to BLP can
be proved by induction. One shows that the initial state is secure and that the
state-transition function takes secure states again to secure states. With the aid of
this theorem, which is known dmasic security theorepnone can conclude that the
system is secure.

17.12.2004 7917117

BS
0

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Theorem 14. A system(V, vy, R, T') is secureif and only ifv, is a secure state,
and for arbitrary states) = (F, M) that are reachable fromy, v = (F(, M')
with 3r € RT(v,r) = ¢/, and alls € S ando, o, 0, € O, all the following
conditions hold:

e reade M'[s, o] and read¢ M|s, o] imply F/.(0) < F{.(s)
e read € M|s,o] and F{.(o) £ F/(s) imply read¢ M’'[s, o]

e reade M'[s, o], write € M'[s, 0,] and read¢ M{[s, o;] or write ¢ M|s, o]
imply F¢.(o1) < F¢:(on)*

e read € M]s, o, write € M][s,op,] and F/.(o;) £ F{(oy) imply read ¢
M'[s, o] or write ¢ M'[s, op,].

One should note that Theorem 14 is an instance of the usual induction over the
computation of state machines, which can be used as a tool to prove security. It
does not, however, provide any additional argument for the claim that the defini-

tion of security according to BLP itself is adequate. For a detailed discussion on

this aspect, cf. [31, 32].

Remark 15 (Comparison to the original BLP modelhe original model of BLP

in [16] additionally comprised aeed-to-knowprinciple, which is modeled by

a second access matrix. The two matrices are connected conjunctively, i.e. the
reference monitor allows for an access only if it is entered in both matrices. This
is guaranteed by an additional security property, called ds-property. This makes
the model more complex than the variant we have described. Whetheedide
to-knowprinciple should be taken into account in a model is certainly dependent
on the application. It should be noted that need-to-know in [16] is modeled based
ondiscretionary access contraln [16], in addition to the access modesdand

write, alsoappendand executeare defined. Those accesses that both read and
write are classified agppend and those that neither read nor write are classified
asexecute

Formalization of a Security Policy

The model according to Bell and La Padula offers a generic framework in which
different security policies for access control can be defined. In the preceding sec-
tion the setS of subjects, the seb of objects, and the latticél., <) of security
levels were not further specified. Also, the concrete definition of the state ma-
chine’s initial state, the set of requests, and the state-transition functiowere

40One should note thattéad € M'[s, 0], write € M'[s, 0], read ¢ M]|s, 0], andwrite ¢
M(s, 01], imply Ff.(0;) < F{.(op)", as required in [32], is not sufficient in this case.

80/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

left open. A formal model of a concrete security policy is obtained by an instanti-
ation of these parameters and a proof that the state machine is secure (according
to BLP, i.e. the simple security property and th@roperty should be satisfied).

The parameters that need to be instantiated are summarized in Table 6.4.

S | subjects e.9.{s1,52,- -, Sm}

O | objects e.g.{o1,09,...,0,}

L | confidentiality levels | e.g.{unclassifiedsecret. ..}
< | order overL <C LxL

vp | Initial state vy €V

R | requests

T | state-transition functionT : V x R — V

Table 6.4: Parameters of BLP

In [16], an instantiation is given for the definition of the security policy for
the MULTICS operating system. The set of subjects, the set of objects, and the
confidentiality levels are defined following those defined in MULTICS. The state-
transition function is given by a set of rules, where for each rule it is shown that it
maps secure states into secure states, and therefore the assumptions of Theorem 14
are satisfied. The rules abstract from the real MULTICS kernel functions. The
correspondence between kernel function and rule is given in [16].

Assumptions about the Operation Environment

Security policies defined with the aid of the BLP model require that the access
control cannot be circumvented. Furthermore, all subjects and objects that are
relevant for the access control need to be modelédandO. In particular, local
memory of processes should be modeled by elements. df local memory is

not modeled, it can be used as an intermediate memory to copy contents of high-
level objects into low-level ones. This downgrading, however, compromises the
security of the system.

Known Limitations of the Security Model

The BLP model is accepted and is widely used. However, it allows for the defini-
tion of security policies that, intuitively, do not provide an adequate definition of
security. This difficulty is exemplified by syste/, an example taken from [33].
The initial state ofZ is an arbitrary secure state, and the transitiong change

F¢ in away that assigns the lowest confidentiality level to all subjects and objects
if any access is requested. Thus, each access request is successful.Sgatem
isfies the definition of security according to BLP but it does not protect the objects

17.12.2004 81/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

from any access. This shows that it is often necessary to restrict the way in which
F¢ andM can be changed over and above the requirements of the BLP model. A
generic framework for this is described in [32]

If changes tdF; are forbidden completely, the confidentiality levels of objects
or their contents cannot be lowered but only increased. In practice, this require-
ment is often too restrictive and incompatible with other system requirements.
To circumvent this, most of the time trusted processes are introducéuaisied
processmay bypass the security policy and thus downgrade objects. Of course,
the security policy of the whole system can then only be guaranteed modulo the
trustworthiness of such processes. Trustworthiness here means that one is forced
to trust the processes. Whether they can in fact be trusted is often an exceedingly
difficult question for the concrete application. There is further need for research
in this direction.

While the general notion of security and BLP have been used as synonyms,
in particular in the 1970s, today BLP is no longer seen as a definition of security
but more as a technical realization which can be used to effect security (e.g. in the
sense of information flow control).

Variants of Bell/La Padula

Compared with the version of Bell/La Padula we presented, two possibilities for
variation can be distinguished. First, the combination of mandatory access con-
trol with discretionary access control using an additional access control matrix.
Access is only granted if the respective access mode is present in both access ma-
trices. An example is the original variant of Bell/La Padula, which has already
been discussed in Remark 15. Second, the malleabilit-odnd M with state
transitions can be restricted. E.g. it is possible to change-hr®perty accord-

ing to Remark 12. The resulting requirement is somewhat more restrictive than
the x-property given in Definition 11. In Section 6.2.2, this variant is illustrated
for the security model following Biba. In [32], a framework is presented which
allows for the definition of different variants of BLP differing in haky. can be
changed dynamically. The spectrum ranges from arbitrary allowed changgs of

to a staticF that is not changed at all, via restrictions that only allow certain
subjects to changec.

6.2.2 Biba

The Biba model [17] allows for the definition of security policies that govern
changes by active subjects like, e.g., processes, to passive objects like, e.g., files.
The goal of such a security policy is to protect the content of the objects from

82 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

forbidden changes without having to trust the subjects. We present the original
model but use the terminology introduced in Section 6.2.1.

Access control in Biba is based on reference monitors like Bell/La Padula.
Thus, the three prerequisites completeness, protection, and correctness need to
be guaranteed. The access control matrix can, in the variant described here,
be changed dynamically, but with tighter restrictions than those given in Sec-
tion 6.2.1. The access matrix is required to satisfy two properties that correspond
to the simple security property and thkgroperty of BLP. The first requires write
access of subjects to be restricted to objects that have the same or a lower integrity
level. Unallowed upgrading of information is forbidden by the second property.
The combination of both properties guarantees that subjects only change the con-
tents of objects that are assigned the same or a lower integrity level.

In contrast to previous approaches like the Lampson Protection Model [27],
in which the allowed changes of the access control matrix were defined by a set
of rules, in Biba the subjects and objects are assigned confidentiality levels. Like
in Section 6.2.1, this approach allows one to prove rules for changing the matrix
correct.

Definition of the Formal Model

In the following a definition of the security model according to Biba [16] is de-
scribed. For uniformity, the same terms and notions are used as in Section 6.2.1.
In [16], several security policies are discussed, and the one that is today known as
the Biba security policy is callestrict integrity policythere.
The access control system is modeled as a deterministic state machine. A state
machine is defined by a tupl&’, v, R, T') whereV is a set of statesg;, € V' an
initial state,R a set of possible requests, dfd (V' x R) — V a state-transition
function that transitions the system from one state into another one according to a
request. The states of the machine will be described in more detail below.
Subjects and objects are modeled by setand O. Subjects can, e.qg., be
persons or processes. Examples of objects are files or memory areas. A function
F; : SUO — I classifies each subject and each object by assigning them an
integrity level from a sef. Possible integrity levels are, e.¢pw andhigh. The
elements of are partially ordered by °and/ and< form a latticé. The possible
access modes are given by the det= {read write}. The current access rights
are fixed in an access matri{ : S x O — P(A), where in each cell of the matrix

Sl.e. < is reflexive ¥i € I.i < i), antisymmetric\i1,io € 1.(i1 < iy Ay < iy) = iy = ia),
and tranSition\(’il, 19,13 € I(Zl <9 Aig < 23) =11 < 13)

61.e. for any two elements , i, € I there exists a lower upper bound, the suprenyifi , i- },
and a greatest lower bound, the infimyx§i;, is}.

17.12.2004 83 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

the current set of allowed access modes is entered. THevsi¢}, e.g., allows
for write access by a subject to an object, but not for read access.

While the setsS, O, L and A are statically fixed for a concrete security policy,
the functionF; and the access control matri¥ can be dynamically changed.
States of the access control are, therefore, modeled ag pait¥/), fixing the set
of states for the whole state machine. The characteristics of BLP are summarized
in Table 6.5.

S | subjects e.9.{s1,52,. .., Sm}
O | objects e.g.{01,09,...,0,}
I | integrity levels e.g.{low, high, ...}
< | order overl <C IxI

A | access modes A = {read write}
I | classification Fr:SUO— L

M | access matrix M:Sx0O— P(A)
V | states V:(SUO —=1I)x(S%x0— P(A))
vy | initial state v eV

R | requests

T | state-transition functionT : V x R — V

Table 6.5: Characteristics of Biba

Because of the state machine mode, an inductive definition of security is pos-
sible.

Definition 16 (Security properties of Biba). A statev = (F;, M) is secure(ac-
cording to Biba), ifv satisfies both of the following conditions:

1. Vs € S.Yo € O.write € M[s, 0] = Fi(o) < Fy(s)
2. Vs € S¥Yo € O.reade M|s, o] = Fi(s) < Fi(o)

A system(V,vg, R, T) is secureif the initial statev, is secure and all states that
are reachable from, via the state-transition functidf are secure, too.

The first condition corresponds to the simple security property (cf. Definition 10)
and the second to theproperty (cf. Remark 12) in BLP. We, therefore, call these
conditions simplydual simple security properignddual x-property.

The dualk-property given here is logically dual to theproperty given in Re-
mark 12, but not dual to that given in Definition 11. Because the property that is
logically dual to Definition 11 can easily be constructed, we have presented an-
other variant to illustrate the variety of variants. In the dual given here, whether a
write entry is allowed in the access control matrix only depends on the integrity

84 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

levels but not on other entries in the access control matrix (in contrast to Defini-
tion 11).

Remark 17 (Comparison to the original Biba moderlhe original Biba model [17]
comprises, in addition to the access morkzsd andwrite, the dynamic creation

of new subjectsnvoke With this extension, the definition of a secure system
(Definition 16) additionally needs to require that a newly created subject has an
integrity level that is no higher than the level of the subject that created it.

Formalization of a Security Policy

The Biba model offers a generic framework in which different security policies
for access control can be defined. In the preceding section, tltedfetubjects,

the setO of objects, and the latticé/, <) of integrity levels were not further
specified. Also, the concrete definition of the state machine’s initial state, the set

of requests, and the state-transition functiowere left open. A formal model of

a concrete security policy is obtained by an instantiation of these parameters and a
proof that the state machine is secure (according to Biba, i.e. the conditions from
Definition 16 should be satisfied). The parameters that need to be instantiated are
summarized in Table 6.6.

S | subjects e.9.{s1,52,---,Sm}
O | objects e.g.{01,09,...,0,}
I | integrity levels e.g.{low, high, ...}
< | order over/ <C IxI

v | Initial state vg €V

R | requests

T | state-transition function” : V x R — V

Table 6.6: Parameters of Biba

A subject’s integrity classification is often the same as its confidentiality clas-
sification. Usually, there is no difference between the reliability of subjects with
respect to confidentiality and integrity. A subject that keeps confidential data se-
cret will in general not sabotage a system either. An object’s integrity classifica-
tion can be very different, however. While confidentiality is supposed to prevent
undesirable leakage of confidential information, integrity prevents sabotage of in-
formation. Integrity levels il can correspond to the confidentiality levels/in
or they can be chosen differently.

17.12.2004 85/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Assumptions about the Operation Environment

Security policies defined with the aid of the Biba model require that the access
control cannot be circumvented. Furthermore, all subjects and objects that are
relevant for the access control need to be modeleédandO. In particular, local
memory of processes should be modeled by elements. df local memory is

not modeled, it can be used as an intermediate memory to copy contents of low-
integrity objects into high-integrity ones. This downgrading of integrity levels,
however, compromises the security of the system.

Known Limitations of the Security Model

Because of the strong conceptual analogy between the Bell/La Padula and Biba
security models (cf. Section 6.3.1), the same limitations apply for the BLP and the
Biba model. We therefore refer to Section 6.2.1.

Variants of Biba

Using the close correspondence between the Bell/La Padula and the Biba security
models (cf. Section 6.3), the variants that have been developed for BLP can easily
be adjusted to Biba. Similarly, variants of Biba can be adjusted to BLP. Therefore,
we refer to the description of BLP variants in Section 6.2.1.

6.3 Relationship between the Models

There is a close correspondence between MLS policies and transitive interference
relation. Each MLS policy corresponds to a transitive interference relation and
vice versa [41]. In a way, this correspondence is the basis for our representation
of known security models, with which MLS policies can be represented formally.
Obviously, it is possible to formalize those policies with BLP and Biba. In these
models, the subjects are directly assigned to security levels (or integrity levels,
respectively). A formalization of MLS policies with the noninterference approach
becomes possible because of the correspondence addressed above.

There is a question about the relationship between the described security mod-
els. BLP and Biba are dual security models. This fact provides a mutual transfer
of concepts and theoretic results. Compared to noninterference, BLP, and Biba
can be considered as implementations.

86 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

6.3.1 Correspondence between Bell/La Padula and Biba

The security models according to Bell/La Padula and Biba are dual. This is clar-
ified in the relationship between the simple security property oktheperty in
BLP and the corresponding security properties in Biba.

While the simple security property in BLP prohibits that a subject can get
read access to an object with a higher confidential level (it prevents direct loss
of confidentiality), the dual property in Biba prohibits that a subject can get write
access to an object with a higher integrity level (it prevents direct loss of integrity).

While thex-property in BLP prohibits that a subject can get write access to an
object if it has read access to an object with a higher security level at the same time
(it prevents indirect loss of confidentiality by copying), the dual property in Biba
prohibits that a subject can get write access to an object with an integrity level if
it has read access to an object with a lower integrity level (it prevents indirect loss
of integrity by copying}.

By means of this correspondence, it is easy to transfer one variant of a security
model to the other model. In the same way it is possible to transfer theoretic
results, thus e.g. Basic Security Theorers also valid for Biba.

6.3.2 Access Control and Noninterference

The Bell/La Padula security model can be considered as a specialization of non-
interference [41]. According to the duality described above between the secu-
rity models, it is also possible to consider the Biba model as a specialization of
noninterference. Hence the BLP and Biba models are catptementation®f
noninterference.

The basis for this is the close relation between MLS policies and transitive
interference relations. For BLP the interference relation is obtained by the fixing

d1 i d dg Iff Fc(dl) S Fc(dg),

whered; andd, are arbitrary security domains in one casedin- d,) and the
corresponding subjects or objects in the other casé{ii,) < F(dy)). Corre-
sponding statements are valid for Biba, where the interference relation, however,
is admittedly defined byl; ~ d iff F;(ds) < Fy(dy).

A technical problem in this definition arises from the different use of the non-
interference relatiort> in Section 6.1 and the classificatioAs and F; in Sec-
tion 6.2.1 and 6.2.2. Whilé- and F; are state components, and thus can be
modified dynamically, the noninterference relatiéncannot be modified dynam-
ically. According to the correspondence given above betweamdF -, the proof

"The reasons for the difference to the corresponding property in Section 6.2.2 are the different
variants.

17.12.2004 87 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

in [41] (corollary 1) that BLP is a specialization of noninterference assumes that
F¢ cannot be modified dynamically. To prove in general that BLP is a specializa-
tion of noninterference (i.e. with dynamic modification &f) it is necessary to
construct a variant of noninterference that allows a dynamic modification of the
noninterference relation.

6.4 Usability of Classical Models

Noninterference and the Bell/LaPadula and Biba models are generic security
models with which confidentiality and integrity requirements can be defined (see
Table 6.7). Each of these generic models represents a class of security models and
a concrete model is obtained by initialization (cf. Section 6.5).

Confidentiality | Integrity
BLP v
Biba v
noninterference vV vV

Table 6.7: Usability of BLP, Biba and noninterference

While BLP and Biba are models for access control policies, noninterference
is a model for information flow control policies. Security models that are based
on access control access to objects that contain the data that should be protected.
Thus, the confidentiality (and the integrity, respectively) of data is not achieved
directly by access restriction to the data but by access restriction to the informa-
tion container. In general, using such access controls, it is not possible to exclude
the existence of covert channels. Timing channels result e.g., if a Trojan horse
delays the transmission of one message without confidential content subject to
secret data. An attacker is now able to reconstruct those secret data, to which he
otherwise does not have access (because of the access control), from this delay.
Covert channels cannot only arise by time-dependent behavior but, e.g., a dif-
ferung intensity of the usage of shared resources like memory requirements. To
exclude the possibility of covert channels, it is not sufficient to restrict the access
to the information containers. In fact, the access to the data contained therein
must be restricted. This can be achived by using information flow control policies
which can be formally modeled by noninterference. Thus, the existence of covert
channels can be excluded by using noninterference.

The CC stress that policies based on access or information flow control can be
modeled formally given the state of the art. Formal modeling for these policies is
demanded explicitly:

88/117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models)

Guideline in the scope of ITSEC and Common Criteria Version: 1.1

[...] Atthe very least, access control and information flow control
policies are required to be modeled (if they are part of the TSP) since
they are within the state of the art. [...] [1, part 3, para. 367] (also
compare Section 3.3.2)

6.5 Instantiation of Classical Models

The security models that described above noninterference, BLP, and Biba, are all
generic. Thus, there is a wide application range for each of these approaches.

So the construction of a security model can be carried out in two steps. In the
first step, one of the generic security models e.g. noninterference, BLP or Biba is
chosen and in the second step, all model parameters are instantiated.

It must be pointed out that a concrete security model does not arise until the
parameter instantiation is done. A statement like, e.g., ""We use the Bell/La Padula
model.” only expresses the decision for one specific class of security models.
Given that this class is extremely huge, the intended parameter instantiation will
in general not be obvious, rather it must be indicated explicitly. Certainly, in case
of a formal security model (as demanded by ITSEC or CC), the instantiation must
be indicated formally. An informal instantiation description cannot adequately
replace a formal instantiation.

As support for such a formal instantiation, all parameters of the different se-
curity models are given in the particular sections. Furthermore, the meaning of
each parameter is explained. Refere to the respective section ""Formalization of a
Security Policy™.

17.12.2004 89/117

a
I I
A

BS
ey

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Chapter 7

Evaluation of Formal Security
Policy Models

Since (formal) security policy models shall create additional assurance that the se-
curity functions contained in the functional specification enforce the TOE security
policy (cf. [1, Part 3, Par. 365]), their evaluation is of particular importance. The
goal of the evaluation of formal security policy models is in the confirmation of
the required correspondence between the functional specification and the security
policies contained in the functional requirements.

The required evaluator activities essentially are related to three areas:

e The correspondence between the functional requirements and the security
principles (Sicherheitsprinzipien)

e The correspondence between the security principles (Sicherheitsprinzipien)
and the security characteristics (Sicherheitscharakteristika)

e The correspondence between the security characteristics (Sicherheitscha-
rakteristika) and the functional specification

In the following sections these key aspects will be explained. Appendix A con-
tains a summary in form of a sub-activity adapted to the presentation style of [3].
The explanations in this chapter serve as justification and additional remarks of
the Work Units proposed there.

7.1 Security Policy vs. Security Policy Model

The correspondece with the TOE security policy formulated in the functional re-
quirements provides the link between the security target (ST) and the formal se-
curity policy model. This area demands for the highest requirements on evalu-

90/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

ator competence since a complex transformation between informally described
requirements and formally specified security properties and features is to be as-
sessed:

1. Where appropriate, the evaluator has to be able to decide if the security
policies that are not formally specified could actually not be formally mod-
eled according to the state of the art (cf. Work Units ADV_SPM-3 and
ADV_SPM-4).

2. The evaluator has to be able to comprehend the meaning of the formal spec-
ification of the secuirty properties and features against the background of
the security target and independent of the possibly erroneous or incomplete
explanations of the developer (cf. Work Unit ADV_SPM-2).

3. The evaluator has to be able to systematically analyse the security proper-
ties und features with the goal to confirm that all security objectives (e.qg.
as secure states) as well as all threats (e.g. as insecure states) are clearly
distinguishable in the model (vgl. Work Unit ADV_SPM-5). This also in-
cludes the assessment of the remaining security environment (assumptions
and organisational security policies) for appropriate consideration.

4. In consideratoin of the rationale/interpretation of the developer the evalua-
tor has to systematically search for gaps in the formal specification of the
security properties and features with the goal to confirm the complete cov-
erage of the security principles and characteristics formulated in the func-
tional security requirements (cf. Work Units ADV_SPM-3, ADV_SPM-4
and ADV_SPM-9).

5. In consideration of the rationale/interpretation of the developer the evaluator
has to systematically search for deviations from the security principles and
characteristics formulated in the functional security requirements with the
goal to confirm the consistency with the security properties and features
(cf. Work Units ADV_SPM-3, ADV_SPM-4 and ADV_SPM-8).

7.2 Security Properties vs. Features

The correspondence between the security properties (Sicherheitseigenschaften)
and the security features (Sicherheitsmerkmale) connects both parts of the for-
mal security policy model via a formal proof. This proof forms the central link
between the requirements specification and the design specification. Here, the
validity of the proofs of properties and consistency are to be assessed.

17.12.2004 91/117

\ i Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

1. The evaluator has to systematically analyse the formal security policy model
with the goal to confirm that all attacking possibilites are clearly distinguish-
able in the model (cf. Work Unit ADV_SPM-5). During this task are e.g.
the choice of data structure or the specification of communication channels
to be considered.

2. The evaluator has to assess the formal proof of correspondence between
security properties and security features in view of suitability and com-
pleteness of the proof obligations as well as in view of the validity of the
arguments used (cf. Work Unit ADV_SPM-6). All partial proofs must be
completely processed. For this the developer has to provide evidence and
the evaluator has to assess at least a random sample of the evidence.

3. The evaluator has to confirm the internal consistency of the formal security
policy model. For this the validity of the arguments user has to be assessed
(cf. Work Unit ADV_SPM-7).

7.3 Security Policy Model vs. Security Functions

The correspondence with the functional specification of the TOE establishes the
connection between the formal security policy model and the highest level of the
presentation of the implementation. It arranges that the development erects at the
basis of a description of the TOEs functionality that is validated against the re-
quirements. Hier ist der fehlerfreie Ubergang einer haufig von komplexen Zusam-
menhangen gepragten Darstellung der Sicherheitseigenschaften und -merkmale in
eine nach funktionalen Gesichtspunkten gegliederte Spezifikation zu bewerten:

1. In consideration of the correspondence demonstration of the developer the
evaluator has to systematically seach for gaps in the functional specification
with the goal to confirm the complete coverage of the security properties and
features (vgl. Work Units ADV_SPM-10, ADV_SPM-12 und ADV_SPM-
13). In particular when the functional specification is not formally presented
the validity of the arguments used has to be assessed.

2. In consideration of the correspondence demonstration of the developer the
evaluator has to systematically seach for differences with respect to the se-
curity properties und features with the goal to confirm the consistency with
the functional specification (cf. Work Units ADV_SPM-11, ADV_SPM-12
and ADV_SPM-13). In particular when the functional specification is not
formally presented the validity of the arguments used has to be assessed.

92 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Chapter 8

How IT Manufacturers Benefit from
Formal Security Models

Main objective of using formal methods in the generation of security models is to
achieve a higher degree obnfidentialityin the security of a system or product.
Definite quality improvement essentialy results from

e agreements that are unambiguous and therefore free of subjective interpre-
tations,

e pairwise consistency of the concepts, and
¢ validity of the postulated interrelations.

The utilization of mathematically establishel@scription techniqueadmit
computer supported analysis methods. This corresponds to approaches known
from other engineering disciplines where properties are to be predicted with a
high extent of confidentiality.

In a formal setting theneaningof the concepts as well as tkerivability are
fixed with mathematicahbsolutenes$ This therefore does not leave any inter-
pretational scope in questions like “What is the meaning of this statement?” and
“What can we derive from these definitions?”. On this basis the consistency of the
basic concepts as well as the validity of initially assumed (or demanded) relation-
ships (security properties) can be proved.

As mentioned in chapter 3 ITSEC and CC require formal methods already
in the early phases of a development. This corresponds to the commonly shared
position that thenost crucialerrors creep in during the requirements engineering
phase. Here, requirements and solutions should be considered alpstact

IRemaining vagueness results from more fundamental problems within the foundations of
mathematics.

17.12.2004 93/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

level, i. e. independent of detailled technical realizations. In particular, as soon
as (mathematically) precise abstractions are needed, there is no alternative to the
utilization of formal methods.

Whenever formal methods are appliecntical parts of a broad development
a noticeable gain in security, precision (of the description), as well as justifica-
tion (of the statements made) arises. This all leads to a consideyadligy im-
provementconcerning the result of the development. And the latter is the real
motivation for the utilization of methods which, in the first instance, require some
additional effort. The evaluation and the validation merely demonstrates the in-
crease in confidentiality.

In the following some light will be shed on some of the aspects mentioned
above. We shall start with a short classification of formal methods in view of a
development process in general.

8.1 Development Methodology

Formal methods aim at an improvement of thevelopment methodolagye-
pending on the respective development phase different kind of problems arise. In
general we consider the following phases: tbgquirements definitignthe con-
ceptionof solutions, and the technicedalization

Guiding idea for the formation of development methodologies shouttbhe
trolling the complexity Two basic measures serve this purposteucturingand
abstraction Structuring results in possibly independent units and therefore affects
essentially the architecture of the development artifact. In contrast, abstraction
aims at appropriate (according to the different phases) views on this artifact.

As a result of data collections critical flaws mostly slip in during the early
development phases. In the area of security this apllies to the formulation of se-
curity properties (requirements definition), the specification of the basic security
functions (conception, abstract system model), and the architectural description.
But just during these phases clean structuring and in particular appropriate lev-
els of abstraction are crucial. A reasonable analysis is ruled out by non-concise
specifications and by mixing up conceptual questions (what) with technical im-
plementation details (how).

Basic prerequisit for a successful requirements engineering therefore are de-
scription means that combine abstractness and modular approaches with a seman-
tically establishecanalysis Concepts on th@rogramming languagéevel are
fairly well understood and could more or less easily be established semantically.
However, they are often inappropriate because of their lack of abstraction possibil-
ities. Natural language descriptions neither use a fixed formalism nor is the under-
lying semantics clearly stated. Therefore they do not offer a suitable starting-point

94 /117 17.12.2004

Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

for further analyses. This holds even if the natural language is artificially restricted
to a selective set of notions or, if graphical representations are added that some-
how support structuring. Verbal descriptions may possibly suffice if we want to
talk to others about the development artifact, although they do not allow for any
technical reflection. A common (methodical) mistake, however, is to directly pass
over from verbal descriptions to implementation oriented concepts.

Formal description techniques allow fprecise abstractionghat serve as a
“missing link” between informal requirements specifications and technical real-
izations. For so-called semi-formal approaches the same applies at best in a rather
restricted way. The following section is concerned with their characterization and
scope.

In addition to the mentioned application during the early development phases,
formal methods are equally well suitedc¢orrectly carry over abstract specifica-
tions to technical realizations. To this end several different steps have to be taken.
In general, the givesriticality is decisive concerning the choice which area has
to be modelled formally and to what depth. Whenever critical design steps arise
— be it in form of complex algorithms or data structures — an additional security
benefit can be gained from the formal treatment of lower levels. And that even
though ITSEC and CC (for levels E6 and EAL7 respectively) only demand a for-
mal treatment of the first refinement step (architectural design).

8.2 Semi-formal Description Techniques

So-calledsemi-formaldescription techniques differ from purely informal approa-
ches by using exactly definddrmalisms In this context commonly used graphi-

cal representations like state transition systems can be viewed — at least in princi-
ple — as dormal language

Formal languages restrict the expressiveness of natural language and give
it some kind of structure. The binding agreement on its syntax somehow pre-
determines the mental handling of development objects. Assuming appropriate
utilization, such patterns of thought already might considerably improve the qual-
ity.

Moreover, certain properties — as, for instance, the (syntactical) consistency of
interface definitions — can be checked on the basis of a fixed syntax. Presuming
appropriate tool support certain design flaws can be recognized (and corrected)
already in early phases.

The restriction tesyntactical properties. e. those properties that can be pre-
cisely formulated solely in terms of syntactic definitions, is indeed serious. As a
rule, security properties will necessarily refer to mathematically defsesoan-
tics.

17.12.2004 95/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

The restriction to purely syntactical elements — for instasigeaturesof data
types, procedures, functions or methods — is just a special case of restricting the
description levelRecently, description techniques stepping well beyond pure syn-
tax became popular. They are even semantically specified, or at least can be so
guite easily. Nevertheless, they are restricted to certain spaspacts As an
example consider object diagrams as they are used in object-oriented approaches.
There the examined relation properties can be conceptualized in a mathematically
precise fashion, for example with the help of the so-called terminological log-
ics. It remains a problem how other “views” — whether concerned with the used
data structures, the information flow or the temporal behavior — can possibly be
semantically connected with these aspects.

8.3 Formal Methods

Formal methods are characterized by a mathematically precise syntagaaa-

tics. Since semantics is added to the syntactic concepts the contribution of struc-
tured reasoning to quality improvement is even stronger than in the case of semi-
formal methods. As experience shows, conceptual vagueness and even flaws — as
for example implicit assumptions and potential exceptions — can easily be “hid-
den” behind incompletly defined semantics.

Beyond the mathematically disciplined way of thinking, however, formal ap-
proaches allow one to completely objectify the reflection on systems. Based on
the constituted semantics there are (calculation-) methods that establish the valid-
ity of assertions via formally specified systems. In general, this happens through
(machine-supported) mathematical proofs. For special problem classes, however,
completely automated decision procedures (e. g. model checking) are known. The
major advantage of such a formal approach lies in both the possibility to formally
examine system specifications andgwaranteedesired properties. Except for
the form of the used mathematical methods this corresponds to the situation in
(todays) established engineering disciplines.

All well-established formalisms allow for a modelling depth that admits an
abstract and at the same time mathematically precise treatment of the relevant se
curity properties together with their respective functions. Thereby, the axiomatic
approach allows for a high abstraction degree by utilizing mathematical struc-
tures, non-constructive specifications (what, not how), non-determinism, and by
omitting details in a controlled manner.

As already mentioned earlier, it is furthermore possible to formally support
the refinement process from the requirement specification down to the implemen-
tation by modelling appropriate software engineering solutions. This concerns,
for example, algorithms, data structures, and the technical realization of the com-

96 /117 17.12.2004

. mn
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

munication between distributed and concurrent components.

Additional mistakes and flaws might possibly arise during the transition from
informal requirements to formal security models as well as during the (non-formal)
technical realization. Nevertheless, an adequate utilization of formal techniques
results in a considerable gain in quality, more than possibly being reached with
other measures. The main concern of this guideline is to bring forward such an
appropriate and profitable (as gain in quality improvement) application of formal
development methods.

17.12.2004 97 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Appendix A

Evaluation of security policy
modeling (ADV_SPM)

A.1 Objectives

The objectives of this sub-activity are to determine whether the security policy
model clearly and consistently describes the security principles and security char-
acteristics of the security policies in terms of security properties and security fea-
tures as their formal counterparts, and whether this description corresponds with
the description of security functions in the functional specification.

A.2 Application notes

This sub-activity applies to cases where the developer has modeled the security
policies of the TOE in an informal, semiformal of formal style.

In element ADV_SPM.[123].2C the components of the TSP are denoted by
the terms “rules” and “characteristics”. Throughout this sub-activity, the term
“(security) principles” is used instead of “rules”. Both terms are considered syn-
onymous.

A TOE security policy model is a representation of the principles and charac-
teristics of security policies in mathematical terms. Their counterparts are called
security properties and security features, respectively. The representation includes
but is not limited to . . . algebraic specifications, finite state machines and logic for-
malisms strong enough to infer the properties from the features. The TSP model
is accompanied by an informal interpretation as part of the rationale explaining
how the principles and characteristics are mapped to the respective properties and
features.

98 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models "
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

It is recognized that not all policies (see work units for ADV_SPM.[123].2C)
can be modeled for all TOEs. This is because either the state of the art is insuf-
ficient to model a given policy in a (semi-) formal style, or because the nature
of the TOE renders impossible the modeling of policies that would otherwise be
possible to model.

Hence the possibility to (semi-) formally model some security policy depends
on the very nature of the TOE enforcing it. While access control policies and
information flow control policies have both been formally modeled successfully,
the possibility of modeling other policies is based on a case by case decision.
Abstention from (semi-) formally modeling security policies requires justification
and rests the burden of proof entirely on the developer’s side.

Those policies that cannot be modeled formally should be modeled semifor-
mally, if possible. If none of the TOE security policies can be formally modeled,
ADV_SPM.3 cannot be met.

Those policies that can be modeled neither formally nor semiformally must be
modeled informally. If all TOE security policies are modeled in an informal style,
ADV_SPM.2 cannot be met.

A.3 Input
The evaluation evidence for this sub-activity is:
a) the ST,
b) the functional specification;
c) the TOE security policy model (TSP model);
d) the user guidance;

e) the administrator guidance.

A.4 Evaluator Actions

This sub-activity comprises one CC Part 3 evaluator action element:

a) ADV_SPM.[123].1E.

17.12.2004 99 /117

BS
2

ADV_SPM.[123].1C

ADV_SPM-1

ADV_SPM-2

ADV_SPM.[123].2C

ADV_SPM-3

ADV_SPM-4

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

A.4.1 Action ADV_SPM.[123].1E
The TSP model shall be [1: informal; 2: semiformal; 3: formal]

The evaluatoshall examinethe TOE security policy model to determine that it
is presented in the degree of formality (informal, semiformal or formal) actually
required by the component level.

The evaluator identifies the formal framework upon which the TOE security policy
model is based and ensures that it is founded on well established mathematical
concepts. He also identifies the security properties and features addressed in the
application notes and ensures the formalization of at least one security policy.

The evaluatoshall examinethe TOE security policy model to determine that it
contains all necessary informal explanatory text.

Supporting narrative descriptions are necessary for all parts of the TSP model
(for example, to make clear the meaning and use of any notation) including the
security principles and security properties.

The TSP model shall describe the rules [i. e. principles; see application notes]
and characteristics of all policies of the TSP that can be modeled.

The evaluatosshall checkthe TOE security policy model to determine that all
security policies that are explicitly included in the ST are modeled.

The security policy is expressed by the collection of the functional security re-
guirements in the ST. Therefore, to determine the nature of the security policy
(and hence what policies must be modeled), the evaluator analyses the ST func-
tional requirements for those policies explicitly called for (e.g. by FDP_ACC and
FDP_IFC, ifincluded in the ST).

If the ST contains no explicit policies (because neither FDP_ACC nor FDP_IFC
are included in the ST), this work unit is not applicable and is therefore considered
to be satisfied.

The evaluatoshall examinethe TOE security policy model to determine that all
security policies represented by the security functional requirements claimed in
the ST are modeled.

In addition to the explicitly-listed policies (see work unit ADV_SPM-3), the eval-
uator analyses the ST functional requirements for those policies implied by the
other functional security requirement classes. For example, inclusion of FDP re-
quirements (other than FDP_ACC and FDP_IFC) would need a description of
the Data Protection policy being enforced; inclusion of any FIA requirements
would necessitate that a description of the Identification and Authentication poli-
cies be present in the security policy model; inclusion of FAU requirements need

100/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

a description of the Audit policies; etc. While the other functional requirement
families are not typically associated with what are commonly referred to as secu-
rity policies, they nevertheless do enforce security policies (e. g. non-repudiation,
reference mediation, privacy, etc.) that must be included in the security policy
model.

If the ST contains no such implicit policies, this work unit is not applicable and is
therefore considered to be satisfied.

The evaluatoshall examinethe TOEsecurity properties and security features ofADV_SPM-5
the security policy model to determine that the modeled security behaviour of the
TOE is clearly articulated.

The TSP model’s properties describe the TOE'’s behaviour in enforcing the prin-
ciples of the policy. For example, a policy that is modeled on the basis of state
transitions would include principles of its states, identify its initial state, and de-
fine what it means to be a secure state.

The TSP model’s features describe the attributes and conditions of the TOE that
come into consideration when enforcing its policy’s characteristics. For exam-
ple, a policy that is modeled on the basis of state transitions would describe the
necessary conditions to transform the TOE from one state to the next.

Together the security principles and security characteristics describe the entire
security posture of the TOE security policy.

In the context of a TOE security policy model the security behaviour is considered
to be clearly articulated only if an adequate mapping from principles and charac-
teristics to their properties and features as their respective counterparts has been
given. The mapping is considered to be adequate if the level of abstraction from
the TOE's realization is detailed enough to allow for correct identification of all
security objectives and the relation to the security environment.

The above condition for clear articulation is necessary but not sufficient. An infor-
mal interpretation of all concepts (including attributes, predicates and variables, if
available) must be provided in order to make clear their intended meaning.

The TSP model shall include a rationale that demonstrates that it is consistexttv_SPM.[123].3C
and complete with respect to all policies of the TSP that can be modeled.

The evaluatoshall examinethe TOE security policy model rationale to determine ADV_SPM-6
that it demonstrates or proves, as appropriate, the correspondance between the
security properties and the security features.

The demonstration or proof, as appropriate, shall show that the security features
enforce the security properties. To determine the enforcement, the evaluator con-

17.12.2004 101/117

BS
2

ADV_SPM-7

ADV_SPM-8

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

siders the security properties and the security features and verifies that the argu-
ments used in the demonstration or proof, as appropriate, are valid.

If the security policy model is semiformal, the demonstration of correspondence
between the security properties and the security features shall be semiformal.

If the security policy model is formal, the proof of correspondence between the
security properties and the security features shall be formal.

The evaluatoshall examinethe TOE security policy model rationale to determine
that it demonstrates or proves, as appropriate, the internal consistency of the TSP
model.

The demonstration or proof, as appropriate, shall show the absence of contradic-
tions within the security policy model. In determining the absence of contradic-
tions, the evaluator verifies that the arguments used in the demonstration or proof,
as appropriate, are valid.

If the security policy model is semiformal, the demonstration of its internal con-
sistency shall be semiformal.

If the security policy model is formal, the proof of its internal consistency shall be
formal.

It is recognized that a complete semiformal demonstration resp. formal proof of
the internal consistency of the TSP model usually is not possible due to the funda-
mental nature of (semi-) formal frameworks. Generally, it is sufficient to generate
evidence using semiformal demonstrations resp. formal proofs based on the spe-
cific TSP model that shows the internal consistency by means of a combination
with generic arguments of the (semi-) formal framework.

For guidance on consistency analysis see [CEM, Annex B.3].

The evaluatosshall examinethe TOE security policy model rationale to deter-
mine that the behaviour modeled is consistent with respect to principles and char-
acteristics described by the security policies (i. e. as articulated by the functional
requirements in the ST).

In determining consistency, the evaluator verifies that the rationale shows that
each description of security properties resp. security features in the TSP model
accurately reflects the intent of the corresponding security principle resp. security
characteristic. For example, if a policy stated that access control was necessary
to the granularity of a single individual, then a TSP model describing the security
behaviour of a TOE in the context of controlling groups of users would not be
consistent. Likewise, if the policy stated that access control for groups of users
was necessary, then a security policy model describing the security behaviour of
a TOE in the context of controlling individual users would also not be consistent.

For guidance on consistency analysis see [CEM, Annex B.3].

102 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

The evaluatoshall examinethe TOE security policy model rationale to deter- ADV_SPM-9
mine that the behaviour modeled is complete with respect to the principles and
characteristics described by the security policy (i. e. as articulated by the func-

tional requirements in the ST).

In determining completeness of this rationale, the evaluator considers the security
properties and security features of the TSP model and maps those properties and
features to explicit policy statements (i. e. functional requirements). The rationale
should show that all security principles and security characteristics of the policies
that are required to be modeled have an associated security property resp. security
feature description in the TSP model.

Abstention from (semi-) formally modeling policy statements where this is re-
quired by the component level always calls for justification on the developer’s
side (also confer the application notes).

The demonstration of correspondence between the TSP model and the fusby_SPM.[123].4C
tional specification shall show that all of the security functions in the functional
specification are consistent and complete with respect to the TSP model.

The evaluatoshall examinethe functional specification correspondence demonADV_SPM-10
stration of the TOE security policy model to determine that it identifies all security

functions described in the functional specification that implement a portion of the

policy.

The degree of formality of the correspondence depends on the presentation style

of the functional specification and the TSP model. If the functional specification

and the TSP model are at least semiformal, the correspondence must be at least
semiformal (cf. ADV_SPM-12). If the functional specification and the TSP model

are formal, the correspondence must be formal (cf. ADV_SPM-13).

In determining completeness, the evaluator reviews the functional specification,
identifies which functions directly support the TSP model and verifies that these
functions are present in the functional specification correspondence demonstration
of the TSP model.

The evaluatoshall examinethe functional specification correspondence demonADV_SPM-11
stration of the TOE security policy model to determine that the descriptions of

the functions identified as implementing the TSP model are consistent with the
descriptions in the functional specification.

To determine consistency, the evaluator verifies that the functional specification
correspondence shows that the functional description in the functional specifica-
tion of the functions identified as implementing the policy described in the TSP
model correspond to the associated security features of the TSP model and there-
fore enforce the same security properties as the TSP model.

17.12.2004 103 /117

BS
2

ADV_SPM.[23].5C

ADV_SPM-12

ADV_SPM.3.6C

ADV_SPM-13

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

In cases where a security policy is enforced differently for untrusted users and

administrators, the policies for each are described consistently with the respective
behaviour descriptions in the user and administrator guidance. For example, the
“identification and authentication” policy enforced upon remote untrusted users

might be more stringent than that enforced upon administrators whose only point
of access is within a physically-protected area; the differences in authentication
should correspond to the differences in the descriptions of authentication within

the user and administrator guidance.

For guidance on consistency analysis see [CEM, Annex B.3].

Where the functional specification is [2: at least] semiformal, the demonstration
of correspondence between the TSP model and the functional specification shall
be semiformal.

The evaluatoshall examinethe functional specification correspondence demon-
stration of the TOE security policy model to determine that it is presented in a
semiformal style.

Where the functional specification is presented in an informal style, this work unit
is not applicable and is therefore considered to be satisfied.

Where the functional specification and the security policy model are presented in
a formal style, this work unit is not applicable and is therefore considered to be
satisfied. In this case, ADV_SPM-13 applies.

The functional specification correspondence demonstration (cf. ADV_SPM-10
and ADV_SPM-11) has to be semiformal.

A semiformal correspondence is one that results from a structured approach with
a substantial degree of rigor (in terms of completeness and correctness). Such a
semiformal correspondence limits the subjective interpretations of its terms, and
so it provides less ambiguity than would exist in an informal correspondence.

Where the functional specification is formal, the proof of correspondence be-
tween the TSP model and the functional specification shall be formal.

The evaluatoshall examinethe functional specification correspondence demon-
stration of the TOE security policy model to determine that it is presented in a
formal style.

Where the functional specification is not presented in a formal style, this work
unit is not applicable and is therefore considered to be satisfied.

The functional specification correspondence demonstration (cf. ADV_SPM-10
and ADV_SPM-11) has to be a formal proof.

104 /117 17.12.2004

. "1 L
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

The formal proof of correspondence removes all subjective interpretations of its
terms by enlisting well-established mathematical concepts to define the syntax and
semantics of the formal notation and the proof rules that support logical reasoning.
The security features within the TOE (which are identified in the formal TSP
model) are expressed in a formal specification language and proved to be satisfied
by the formal functional specification.

17.12.2004 105/117

BS
ey

Devlopment and Evaluation of Formal Security Policy Models

Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

Appendix B

Correspondence with CEM

The effective versino of th€ommon Evaluation Methodology for Information
Technology Security Evaluation (CENB] describes the evaluation activities for
the evaluation assurance levels EAL1 — EALA4. In fact in none of these levels a for-
mal security policy model is required but, the level EAL4 contains the component
ADV_SPM.1, thus an informal securiy policy model.

In CEM [3, Sec. 8.6.7] the sub-activity for the evaluation of an informal secu-
rity policy model is described as a part of EAL4. In AIS-34 [10, Sec. 1.6.8] the
sub-activity for the evaluation of a formal security policy model is described as a
part of EALS. The work units of the sub-activity proposed in Appendix A closely
correspond with the work units of CEM [3] and AIS 34 [10]. The correspondence
is exposed in Thl. B.1.

| Appendix A | CEM|[3,Sec.8.6.7] | AIS-34[10, Sec. 1.6.8] |
ADV_SPM-1 — 5:ADV_SPM.3-1
ADV_SPM-2 4:ADV_SPM.1-1 5:ADV_SPM.3-2
ADV_SPM-3 4:ADV_SPM.1-2 5:ADV_SPM.3-3
ADV_SPM-4 4:ADV_SPM.1-3 5:ADV_SPM.3-4
ADV_SPM-5 4:ADV_SPM.1-4 5:ADV_SPM.3-5
ADV_SPM-6 — 5:ADV_SPM.3-6
ADV_SPM-7 — 5:ADV_SPM.3-7
ADV_SPM-8 4:ADV_SPM.1-5 5:ADV_SPM.3-8
ADV_SPM-9 4:ADV_SPM.1-6 5:ADV_SPM.3-9
ADV_SPM-10 4:ADV_SPM.1-7 5:ADV_SPM.3-10
ADV_SPM-11 4:ADV_SPM.1-8 5:ADV_SPM.3-11
ADV_SPM-12 — 5:ADV_SPM.3-12
ADV_SPM-13 — 5:ADV_SPM.3-13

Table B.1: Correspondence of sub-activity ADV_SPM with CEM and AlS-34

106 /117

17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Appendix C

Best Practices

The following notes address possible problems of FSPM evaluations which might
arise as a consequence of ambiguous interpretations of CEM [3]. In order to
minimize the scope of ambiguity the following suggestions (TB2se made.
They are based on experience with present evaluations.

Evaluators can be positive about the evaluation if the developers adhere to the
suggestions. It is recommended to support the guidance of SPM presented in this
document by these additional suggestions.

The suggestions are intended as a summary and are not intended to be conclu-
sive. In the following the notions of the building blocks of security policy models
are sometimes termed differently. Security Properties are also known as Invariants
whereas Security Characteristics should be identified with their ITSEC counter-
part "Practices™. Security Features translate into the German "Merkmale".

Apart from initial security conditions and assumptions the security features
also incorporate the definition of datatypes, attributes, subjects, objects, etc. Note
that the formal part must be strong enough to allow for logical rules of inference.
In addition to the usual requirements the developer provides sufficient information
to render all required demonstrations and proofs comprehensible to the evaluator.

Common Criteria [1, Part 3, Sec. 10.7] states that

“While a TSP may include any policies, TSP models have tradi-
tionally represented only subsets of those policies, because modeling
certain policies is currently beyond the state of the art. The current
state of the art determines the policies that can be modeled, and the
PP/ST author should identify specific functions and associated poli-
cies that can, and thus are required to be, modeled. At the very least,
access control and information flow control policies are required to

1“To Be Done”: Action required to be performed by the developer

17.12.2004 107 /117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

be modeled (if they are part of the TSP) since they are within the state
of the art.”

The definition of TSP models is accompanied by the Common Evaluation
Methodology [3] for informal TSP models in ADV_SPM.1.:

“In cases where the security policy model presentation is infor-
mal, all security policies can be modeled (i. e. described), and so must
be included.”

Because the security policy is represented as a collection of security require-
ments, all security requirements must be addressed at the informal level. The
developer has to argue if formal and/or semiformal modeling is impossible for
certain requirements. However, the argument does not excuse him from infor-
mally modeling the security policy being addressed by the requirement.

TBD1
The developer is required to explicitly provide an interpretation as part of
the formal security policy model. The following paragraphs provide guid-
ance on how this should be done.

According to work unit ADV_SPM-6 it has to be formally shown that the
security features enforce the security properties. As long as the evaluator
is not able to identify the security principles and security characteristics the
work unit remains inconclusive at best. The use of tables like Tab. C.1 is
suggested where all missing information should be provided by the devel-
oper in the respective boxes. It is included as an example of the degree of
detail the developer is required to provide. All security functional require-
ments (SFRs) of the ST and PP (if claimed) have to be addressed.

All SFRs which cannot be modeledmust nevertheless be addressed by the
developer in order to provide sufficient arguments why this cannot be done.
They always have to be informally modeled. The evaluator examines the
arguments, he does not provide them. Failure of identification renders the
work unit inconclusive:

¢ If some of the security functional requirements are not applicable (n/a)
the developer has to provide convincing arguments why they cannot
be covered by the model. As an example the evaluator would expect
something like the following:

Security characteristic charl is informally described in section
secl of [refl] and maps to security feature feat3 described for-
mally in section sec3 of [ref3]. Security principle prin2 is infor-
mally described in section sec2 of [refl] and maps to security
property prop4 described formally in section sec4 of [ref3].

108 /117 17.12.2004

Guideline

. -
Devlopment and Evaluation of Formal Security Policy Models '
in the scope of ITSEC and Common Criteria Version: 1.1

TSF

SFR TOE Security Policy TSP Model

Characteristic| Principle [Feature | Property \

TSF1

FMT_LIM.1.1

FMT_LIM.2.1 | charlinsecl| prin2in sec2| fest3 in sec3| prop4 in sec4

FPT_SEP.1.1

FPT SEP.1.2

TSF2

FDP_ACC.1.1

FDP_ACF.1.1

FDP_ACF.1.2

FDP_ACF.13

FDP_ACF.1.4

FMT_MSA.3.1

FMT_MSA.3.2 | charlinsecl| char2insec2 n/a n/a

FMT_MSA.1.1

FMT_SMF.1.1

TSF3

FPT_FLS.1.1

FRU_FLT.2.1

Table C.1: Relation of TSFs and SFRs to the TSP model

e Characteristics, principles, features and properties need not be dif-
ferent for each box (although they may), but it has to be indicated
that equal characteristics (like Memory Access Control) and Princi-
ples (like restricted user access) map to features and properties. If
features and properties are the same for different boxes it has to be
argued how they support different security requirements.

Formal theorem thm1l (e.g. feat3 |- prop4) has been proven in
section sec of reference [ref], showing the invariant prop4 under
the assumption feat3.

Logically speaking theory feat3 could be made up of non-logical
axioms ax1, ax2, etc. using the rules of inference and logical
axioms of some logic implicit in the deduction operator “|-"(e. g.
HOL in Isabelle or some sequent logic in Gentzen style or some
intuitionistic logic or some temporal logic in VSE, or .. .).

thm1l supports FMT_LIM.2.1 because ... (developer explana-
tion required). The non-logical axioms making up the theory
feat3 in which the proof was given are: axl, ax2, etc. They
have the following interpretation and were chosen for the follow-
ing reason: ... (developer argument).

e Explanations like the following:FDP_ACC.1: is met because the

model describes access control, relating subjects, objects and
operations.” are insufficient and unacceptable for several reasons: It
is not clear which theorem supports FDP_ACC.1 and this has to be

17.12.2004 109 /117

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

BS
2

identified by the developer. It is necessary to support the above claim
by convincing arguments. Itis also necessary to explain how the model
describes access control by referencing the feature and property of the
invariant the theorem addresses, see above.

Important note: The developer has to provide informal interpreta-
tions of the theorems being proved. The evaluator then examines the
arguments provided by the developer for completeness and consis-
tency and verifies that the formal proofs are correct. To support this,
complete formal proof scripts must be provided by the developer.

TBD2

The informal description must contain a level of detail enabling the evalu-

ator not only to see why the description is made but rather how the model
should be interpreted. This includes a detailed informal description of se-
curity principles and characteristics and a mapping onto their respective
formal counterparts “Security Features” and “Security Properties”, needed
to state and proof the invariants of the model. It is necessary to explain the
invariants informally, map them to their formal counterparts and show how

they contribute to the security requirements, see TBD1.

TBD3

Work unit ADV_SPM-7 requires the evaluator to examine that the formal
security policy model contains a proof of its internal consistency. The de-
veloper should argue for consistency of his model, i. e. absence of formal
contradictions. It is well known that formal consistency proofs are possible
as soon as a finite model of all of the axioms making up the theory can be
given. If for example the FSPM models interacting state machines, a con-
crete finite state machine which provably satisfies all of the axioms could
serve as a proof of consistency.

TBD4
The SPM sometimes includes security requiremenets (e.g. FRU_FLT.2 and
FPT_FLS.1) supported by different security functions. If so, the developer
has to provide formal support on each instance or otherwise argue why this
ist not possible. The coverage of the security policy is not considered to be
complete unless the developer argues for each and every instance of occur-
rence.

110/117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

Bibliography

[1] Common Ciriteria Project Sponsoring Organisation€ommon Criteria
for Information Technology Security Evaluation (C®%rsion 2.1, August
1999. Also available alSO/IEC 15408: IT — Security techniques — Evalua-
tion criteria for IT security

[2] Bundesamt fur Sicherheit in der InformationstechnlBemeinsame Krite-
rien fUr die Prifung und Bewertung der Sicherheit von Informationstechnik
Version 2.1, August 1999. Ubersetzung des englischsprachigen Originals

[1].

[3] Common Criteria Project Sponsoring Organisaticdemmon Methodology
for Information Technology Security Evaluatidpart 2: Evaluation Method-
ology, Version 1.0, August 1999.

[4] Office for Official Publications of the European Communitiéstormation
Technology Security Evaluation Criteria (ITSE®grsion 1.2, June 1991.

[5] Amt fur amtliche Verdéffentlichungen der Européaischen Gemeinschaften.
Kriterien fur die Bewertung der Sicherheit von Systemen der Information-
stechnik Version 1.2, Juni 1991. Ubersetzung des englischsprachigen Orig-
inals [4].

[6] Office for Official Publications of the European Communitiéstormation
Technology Security Evaluation Manual (ITSEMgrsion 1.0, September
1993.

[7] Amt fur amtliche Veroffentlichungen der Européaischen Gemeinschaften.
Handbuch fir die Bewertung der Sicherheit von Systemen der Information-
stechnik Version 1.0, September 1993. Ubersetzung des englischsprachigen
Originals [6].

[8] Joint Interpretation Working Group (JIWG)TSEC Joint Interpretation Li-
brary (ITSEC JIL) Version 2.0, 1998.

17.12.2004 111/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

[9] Bundesamt fur Sicherheit in der Informationstechmwendungshinweise
und Interpretationen zum Schema (AlSjand: 6. August 2002.

[10] Bundesamt fir Sicherheit in der Informationstechikiwendungshinweise
und Interpretationen zum Schema (AlEvaluation Methodology for CC
Assurance Classes for EAL5+ Version: 1.00, June 1, 2004.

[11] DINV66291-1, Ausgabe: 2000-04Chipkarten mit Digitaler Signatur-
Anwendung / Funktion nach SigG und SigV — Teil 1: Anwendungss-
chnittstelle Beuth-Verlag, April 2000.

[12] TeleTrusT Deutschland e.VGeneric Security Target for ICC embedded
software for Signature Creation conforming with German SigG, SigV and
DINV 66291-1 Version 1.0, September 12th, 2000.

[13] Bundesamt fur Sicherheit in der InformationstechnikKseneric Formal
Model of Security Policy for a SigG compliant IC®ersion 1.2, Novem-
ber 27th, 2001.

[14] D. E. Bell, L. La Padula. Secure Computer Systems: Mathematical Founda-
tions. MITRE Technical Report 2547, Volume |, March 1973.

[15] D.E. Bell, L. La Padula. Secure Computer Systems: A Mathematical Model.
MITRE Technical Report 2547, Volume II, May 1973.

[16] D.E. Bell, L. La Padula. Secure Computer Systems: Unified Exposition and
Multics Interpretation. MITRE Technical Report 2997, March 1976.

[17] K. J. Biba Integrity Considerations for Secure Computer Systems. MITRE
Technical Report MTR-3153, April 1977.

[18] J. A. Goguen, J. Meseguer. Security Policies and Security Models. In Pro-
ceedings of the Symposium on Security and Privacy, IEEE Computer Soci-
ety, pp. 11-20, Oakland, CA, April 1982.

[19] J. A. Goguen, J. Meseguer. Inference Control and Unwinding. In Proceed-
ings of the Symposium on Security and Privacy, IEEE Computer Society,
pp. 75-86, Oakland, CA, April 1984.

[20] J. Graham-Cumming and J.W. Sanders. On the Refinement of Non-
interference. InProceedings of the IEEE Computer Security Foundations
Workshoppages 35-42, 1991.

[21] J. Gray. Toward a mathematical foundation for information flow security.
Journal of Computer Securityol. 1, no. 3—4, pp. 255-294, 1992.

112 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

[22] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.

[23] D. Hutter, H. Mantel, G. Rock, W. Stephan, A. Wolpers, M. Balser, W. Reif,
G. Schellhorn, and K. Stenzel. VSE: Controlling the Complexity in Formal
Software Development. IRroceedings Current Trends in Applied Formal
Methods, FM-Trends 9&pringer LNCS 1641, 1999.

[24] T. Inhringer. Diskrete MathematikB. G. Teubner, Leitfaden der Informatik,
Stuttgart, 1994.

[25] J. Jacob. On the Derivation of Secure Componentsrateedings of the
IEEE Symposium on Security and Privappages 242-247, Oakland, CA,
1.-3. Mai, 1989.

[26] F. Koob, M. Ullmann, S. Wittmann. The New Topicality of Using For-
mal Models of Security Policy within the Security Engineering Process.
In Proceedings Current Trends in Applied Formal Methods, FM-Trends 98
Springer LNCS 1641, 1999.

[27] B. W. Lampson. Protection, Proceedings of the Fifth Annual Princeton
Conference on Information Science Systems, pp. 437-443, 1971.

[28] H. Mantel. Possibilistic Definitions of Security — An Assembly Kit —. In
Proceedings of the IEEE Computer Security Foundations Workgteaes
185-199, Cambridge, UK, July 3-5 2000.

[29] H. Mantel. Unwinding Possibilistic Security Properties. Huropean
Symposium on Research in Computer Security, ESORICS 2000S,
Toulouse, France, October 4-6 2000. Springer.

[30] D. McCullough. Specifications for Multi-Level Security and a Hook-Up
Property. InProceedings of the IEEE Symposium on Security and Prjvacy
pages 161-166, Oakland, CA, 27.—29. April, 1987.

[31] J. McLean A Comment on the “Basic Security Theorem” of Bell and
La Padula Inform ation Processing Letters 20, pp. 67—-70, 1985.

[32] J. McLean. The Specification and Modeling of Computer Security. Com-
puter, Vol. 23, no. 1, Jan. 1990.

[33] J. McLean. Security Models. Encyclopedia of Software Engineering, Ed.
John Marciniak, Wiley & Sons, Inc., 1994.

17.12.2004 113/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

[34] J. McLean. A General Theory of Composition for Trace Sets Closed Under
Selective Interleaving Functions. IEEE Symposium on Security and Privacy,
pp. 79-93, IEEE Press, 1994.

[35] J. McLean. A General Theory of Composition for a Class of “Possibilis-
tic” Properties.IEEE Transactions on Software Engineeridgnuary 1996,
Volume 22 Number 1, pp. 53-67.

[36] J. K. Millen. Unwinding Forward Correctability. [®Proceedings of the
Computer Security Foundations Workshppges 2—-10, 1994.

[37] C. O’Halloran. A Calculus of Information Flow. IRroceedings of the
European Symposium on Research in Computer Segciliatijjoute, France,
1990.

[38] G. Rock, W. Stephan, and A. Wolpers. Modular Reasoning about Structured
TLA Specifications. In R. Berghammer and Y. Lakhnech (Ed&yl Sup-
port for System Specification, Development and Verificappn 217-229,
Advances in Computing Science, Springer, 1999.

[39] A.W. Roscoe, J.C.P. Woodcock, L. Wulf. Non-Interference through De-
terminism. Journal of Computer Security4(1), 1996. Revised from Eu-
ropean Symposium on Research in Computer Security (ESORICS), LNCS
875, pp. 33-53, Springer, 1994,

[40] A.W. Roscoe, M.H. Goldsmith. What is Intransitive Noninterference? In
Proceedings of the 12th IEEE Computer Security Foundations Workshop,
Mordano, Italien, IEEE Society Press, June 28-30, 1999.

[41] J. Rushby. Noninterference, Transitivity, and Channel-Control Security Poli-
cies. Technical Report SRI-CSL-92-02, Computer Science Laboratory, SRI
International, Menlo Park, CA, October 1992.

[42] P.Y.A. Ryan. A CSP Formulation of Non-Interference and UnwindiGg.
pher, pages 19-30, Winter 1991.

[43] D. Sutherland. A Model of Information. 18th National Computer Security
ConferenceSeptember 1986.

[44] A. S. TanenbaunModern Operating Systeminternational Editions, Pren-
tice Hall, Englewood Cliffs, NJ, USA, 1992.

[45] A. Zakinthinos and E. Lee. The Composability of Non-Interference. In
Proceedings of the IEEE Computer Security Foundations Workgreapes
2-8, Kenmare, Ireland, 1995.

114/ 117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models '
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

[46] A. Zakinthinos and E.S. Lee. A General Theory of Security Properties. In
Proceedings of the IEEE Symposium on Security and Prjyasges 94-102,
Oakland, CA, May 4—-7 1997.

[47] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols.Journal of Computer Securit$:85 —128, 1998.

[48] Tobias Nipkow. Hoare Logics in Isabelle/HOL. Froof and System-
Reliability, H. Schwichtenberg and R. Steinbriiggen,editors. Kluwer, 2002,
pages 341-367.

[49] L. C. Paulson. Isabelle: the next seven hundred theorem provers (system
abstract). In: E. Lusk and R. Overbeek (editors), 9th International Conf. on
Automated Deduction (Springer LNCS 310, 1988), pages 772 - 773.

[50] Tobias Nipkow and L. C. Paulson. Isabelle-91 (system abstract). In: D.
Kapur (editor), 11th International Conf. on Automated Deduction (Springer
LNAI 607, 1992), pages 673 - 676.

[51] S. Owre and J. M. Rushby and and N. Shankar. PVS: A Prototype Verifi-
cation System. In: D. Kapur (editor), 11th International Conference on Au-
tomated Deduction (CADE), 1992, Lecture Notes in Atrtificial Intelligence,
volume 607, pages 748-752, Springer

[52] Franz Huber and Bernhard Schétz and Alexander Schmidt and Katharina
Spies. AutoFocus - A Tool for Distributed Systems Specification. In: Pro-
ceedings FTRTFT’96 - Formal Technigues in Real-Time and Fault-Tolerant
Systems. 1996. p. 467-470. Bengt Jonsson, Joachim Parrow (ed.). LNCS
1135, Springer Verlag.

[53] O. Slotosch. Modelling and Validation: AutoFocus and Quest. Formal As-
pects of Computing 12(4):225-227, 2000

[54] J. M. Spivey. The Z Notation: A reference Manual. International Series in
Computer Science. Prentice-Hall, New-York, second edition, 1992

[55] Jean-Raymond Abrial and M. K. O. Lee and D. S. Neilson and P. N. Schar-
bach and I. H. Sorensen, The B-method (software development). BP Res.,
Sunbury Res. Centre, Sunbury-on-Thames, UK, VDM 91. Formal Software
Development Methods. 4th International Symposium of VDM Europe Pro-
ceedings.”, volume 2, pages 398-405, W. J. Prehn, S.; Toetenel (editors),
Springer-Verlag, Berlin, Germany.

17.12.2004 115/117

BS
2

Devlopment and Evaluation of Formal Security Policy Models
Version: 1.1 in the scope of ITSEC and Common Criteria Guideline

[56] J. Bicarregui (ed.). Proof in VDM: Case Studies. Springer-Verlag, FACIT
series, March'98.

[57] The RAISE Method Group. The RAISE Development Method. In BCS
Practitioner Series. Prentice Hall, 1995.

[58] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Sym-
bolic model checking: 10E20 states and beyond. In LICS, 1990.

[59] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. In Proceedings of the Nineteenth Annual ACM Symposium on Princi-
ples of Programming Languages, January 1992.

[60] G. Holzmann. SPIN Model Checker, The: Primer and Reference Manual.
AT&T Bell Labs Murray Hill New Jersey, ISBN: 0-321-22862-6, Addison
Wesley Professional, 2004

[61] Friedrich Ludwig Gottlob Frege. Begriffsschrift (Concept Script), eine der
arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle a.
S., 1879

[62] Flemming Nielson and Hanne Riis Nielson and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, Berlin - Heidelberg - New York, 1999

[63] Leslie Lamport. Specifying Systems. The TLA+ Language and Tools for
Hardware and Software Engineers. Addison Wesley, 2003

[64] David Harel and Dexter Kozen and Jerzy Tiuryn. Dynamic Logic. Founda-
tion of Computing Series, MIT Press, 2000

[65] Christoph Weidenbach and Bernd Gaede and Georg Rock SPASS & FLOT-
TER Version 0.42. Lecture Notes In Computer Science, proceedings of the
13th International Conference on Automated Deduction, pages 141 - 145,
Springer Verlag London, 1996

[66] Gernot Stenz and Andreas Wolf. E-SETHEO: Design, Configuration and
Use of a Parallel Automated Theorem Prover. Proceedings, 12th Australian
Joint Conference on Atrtificial Intelligence, LNAI, Norman Foo (editor), vol-
ume 1747, Sydney, Australia, Springer Berlin 1999

[67] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concur-
rent systems. Springer-Verlag New York,1992

116 /117 17.12.2004

. -
Devlopment and Evaluation of Formal Security Policy Models
Guideline in the scope of ITSEC and Common Criteria Version: 1.1

[68] Rober S. Boyer and J. Strother Moore and Matt Kaufmann. The Boyer-
Moore Theorem Prover and Its Interactive Enhancement. Computers and
Mathematics with Applications, 29(2), pages. 27-62, 1995

[69] Dieter Hutter and Claus Sengler, INKA - The Next Generation. In Proceed-
ings of 13th International Conference on Automated Deduction, CADE-13,
Mc Robbie and J. Slaney (editors), LNAI, volume 1104, pages 288 - 292,
Springer-Verlag, New Brunswick, USA, 1996

[70] Serge Autexier and Dieter Hutter and Heiko Mantel and Axel Schairer. Sys-
tem Description: INKA 5.0 - A Logical Voyager. In Proceedings 16th In-
ternational Conference on Automated Deduction, CADE-16, H. Ganzinger
(editor), LNAI, volume 1632, Trento, Italy, Springer-Verlag, 1999

[71] Dieter Hutter. Annotated Reasoning. Annals of Mathematics and Artificial
Intelligence (AMAI). Special Issue on Strategies in Automated Deduction,
volume 29, pages 183 - 222, Kluwer Academic Publishers, 2000

[72] Alan Bundy and David Basin and Dieter Hutter and Andrew Ireland. Rip-
pling: Meta-level Guidance for Mathematical Reasoning. Cambridge Uni-
versity Press, December, 2004

[73] H.-D. Ebbinghaus and J. Flum and W. Thomas. Einfihrung in die mathema-
tische Logik. Darmstadt, 1978.

[74] Kurt Godel. Uber formal unentscheidbare Satze der Principia Mathemat-
ica und verwandter Systeme |. Monatsheft fur Math. und Physik 38, 1931,
S.173-198.

[75] Kurt Godel. Diskussion zur Grundlegung der Mathematik, Erkenntnis 2.
Monatsheft fir Math. und Physik, 1931-32, S.147-148.

[76] Melvin Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1990. Second edition, 1996.

17.12.2004 117 /117

