

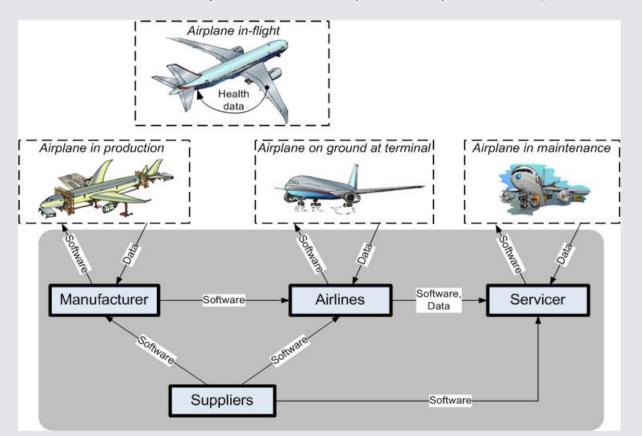
Electronic Distribution of Airplane Software and the Impact of Information Security on Airplane Safety

Richard Robinson¹, Mingyan Li¹, Scott Lintelman¹, Krishna Sampigethaya², Radha Poovendran², **David von Oheimb³**, Jens-Uwe Bußer³, and Jorge Cuellar³

¹ Boeing Phantom Works, Seattle
 ² University of Washington, Seattle
 ³ Siemens Corporate Technology, Munich

SAFECOMP 2007, Nuremberg, Germany, 19 September 2007

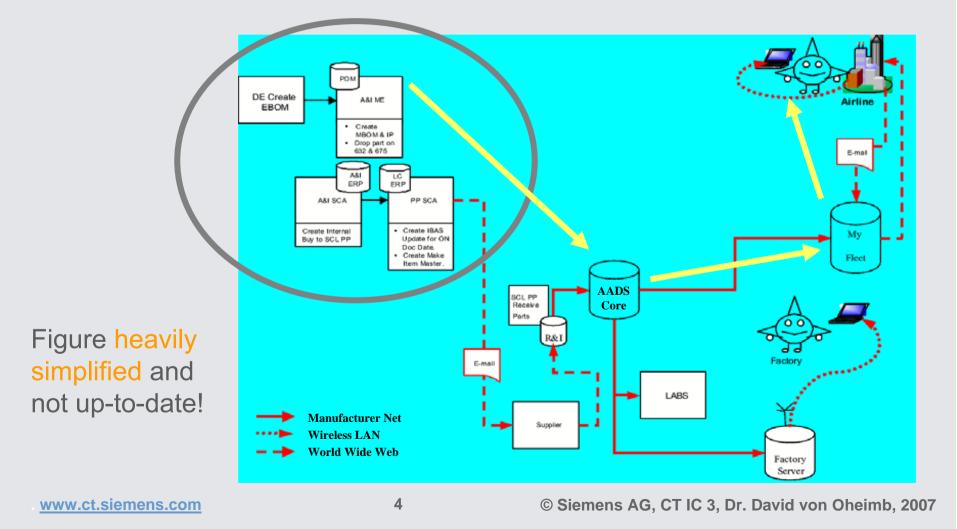
Overview


- Airplane Assets Distribution System
- Assessment according to the Common Criteria

Conclusion

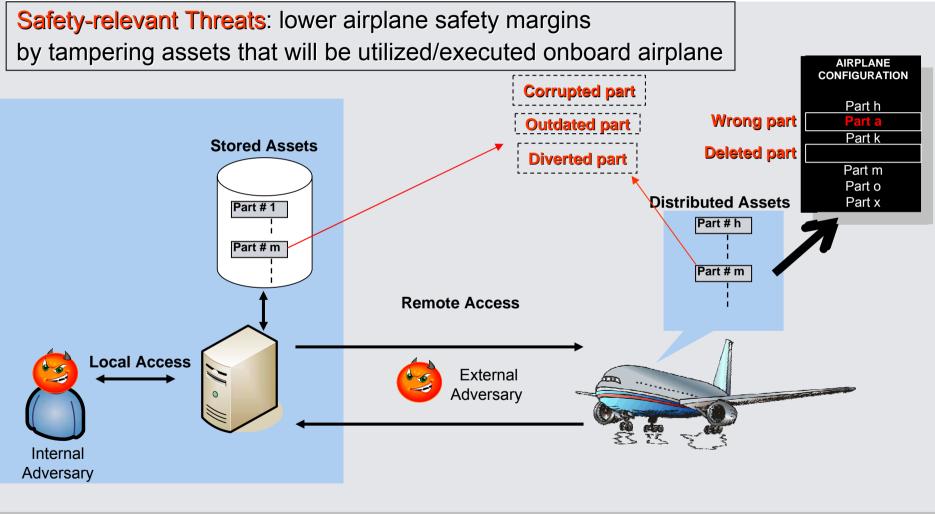
Airplane Assets Distribution System (AADS)

AADS: system for storage and distribution of airplane assets, in particular of *Loadable Software Airplane Parts (LSAPs)* and airplane health data

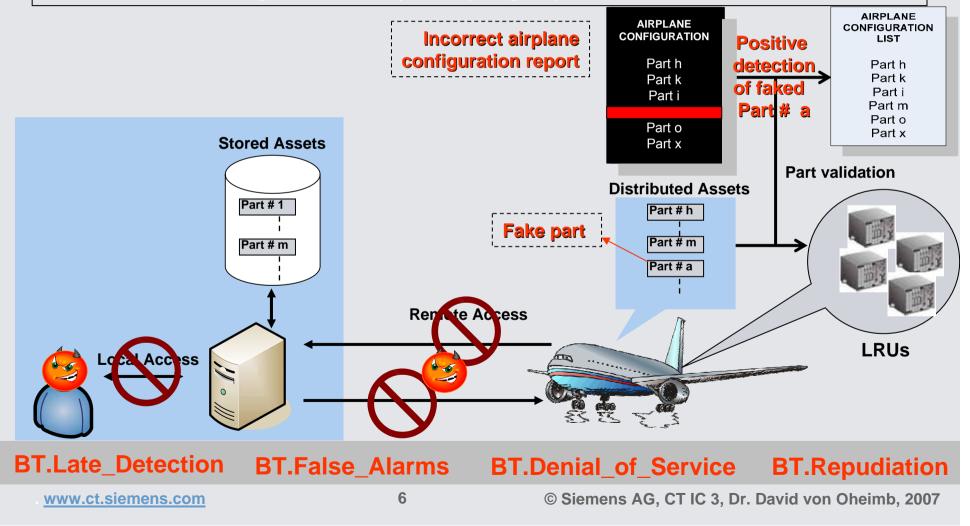


Transition from media-based (CD-ROMs etc.) to networked transport

AADS Architecture


A complex distributed store-and-forward middleware with OSS components

Safety-relevant Threats


ST.Corruption	ST.Staleness	ST.Diversion	ST.Misconfiguration
www.ct.siemens.com	5	© Siemens AG, CT	IC 3, Dr. David von Oheimb, 2007

WASHINGTON

Business-relevant Threats

SIEMENS

Business-relevant Threats: impede business of airplane production, operation, and maintenance organizations by disrupting airplane service

SIEMENS

IT Security as a System Engineering Problem

 Security aims at preventing, or at least detecting, unauthorized actions by agents in an IT system.

In the AADS context, security is a prerequisite of safety.

■ Safety aims at the absence of accidents (→ airworthiness)

Situation: security loopholes in IT systems actively exploited
Objective: thwart attacks by eliminating vulnerabilities
Difficulty: IT systems are very complex. Security is interwoven with the whole system, so very hard to assess.

Remedy: evaluate system following the Common Criteria approach

- address security systematically in all development phases
- perform document & code reviews and tests
- for maximal assurance, use formal modeling and analysis

SIEMENS

Overview

- Airplane Assets Distribution System
- Assessment according to the Common Criteria
- Conclusion

Common Criteria (CC) for IT security evaluation

SIEMENS

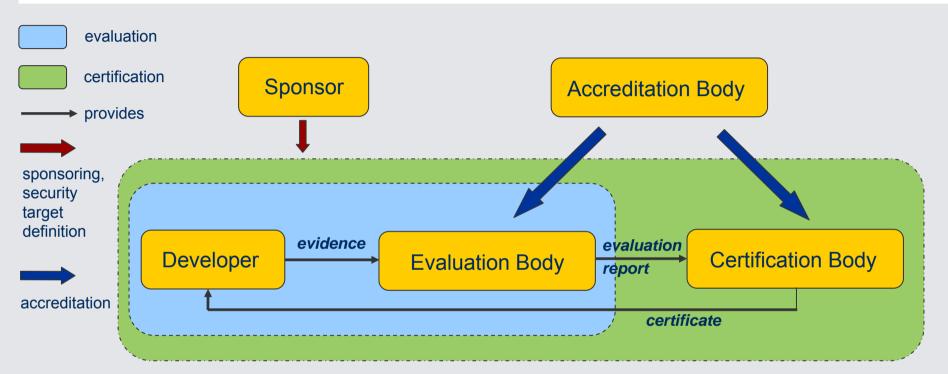
product-oriented methodology for IT security assessment **ISO**/IEC **standard** 15408 Current version: 3.1 of 2006

Aim: gain confidence in the security of a system

- What are the objectives the system should achieve?
- Are the measures employed appropriate to achieve them?
- Are the measures implemented and deployed correctly?

Approach: assessment of system + documents by neutral experts

- Gaining understanding of the system's security functionality
- Checking evidence that the functionality is correctly implemented
- Checking evidence that the system integrity is maintained


Generic "construction kit" for specifying evaluations:

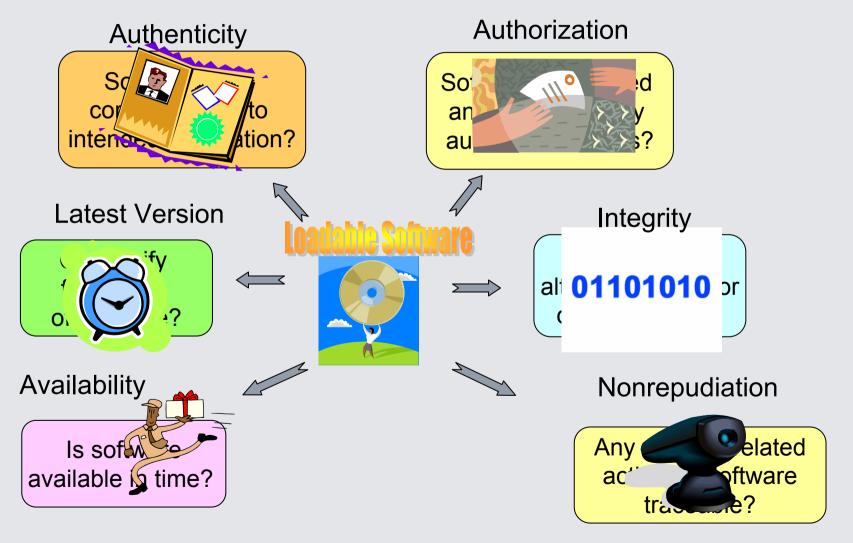
- Building blocks for defining Security Functional Requirements (SFRs)
- Scalable in depth and rigor: Security Assurance Requirements (SARs)

layered as Evaluation Assurance Levels (EALs)

CC Process Scheme

Certification according to the Common Criteria is a rather complex, time consuming and expensive process.

A successful, approved evaluation is awarded a certificate.



AADS Security Specification: CC Protection Profile (1)

- 1. Introduction
- 2. System Description
- 3. Security Environment
 - Assets and Related Actions
 - Threats
 - Required Assurance Level
 - Assumptions
- 4. Security Objectives
 - ... - Rationale

Security Objectives for AADS

Threats Addressed by the AADS Security Objectives

SIEMENS

Threats Objectives		Safety-relevant			Business-relevant				
		Corruption	Misconfiguration	Diversion	Staleness	Unavailability	Late Detection	False Alarm	Repudiation
Safety- relevant	Integrity	\checkmark							
	Correct Destination								
	Latest Version				\checkmark				
	Authentication	\checkmark	\checkmark						
	Authorization	\checkmark	\checkmark						
	Timeliness				\checkmark				
Business- Relevant	Availability								
	Early Detection						\checkmark		
	Correct Status							\checkmark	
	Traceability	\checkmark	\checkmark						
	Nonrepudiation								
Environment	Part_Coherence	\checkmark	\checkmark						
	Loading_Interlocks	\checkmark	\checkmark						
	Protective_Channels	\checkmark							
	Network_Protection				\checkmark				
	Host_Protection								
Assumptions	Adequate_Signing	\checkmark							
	Configuration								
	Development	\checkmark			\checkmark				
	Management	\checkmark	\checkmark						

AADS Security Specification: CC Protection Profile (2)

- 1. Introduction
- 2. System Description
- 3. Security Environment
 - Assets and Related Actions
 - Threats
 - Required Assurance Level
 - Assumptions
- 4. Security Objectives
 - ... - Rationale
- 5. Security Functional Requirements
 - Rationale

Selection of Evaluation Assurance Level (EAL) for AADS

Airline business Flight safety Threat Level **T5**: XXX = significant **T4**: XXX = little assume sophisticated adversary with moderate e.g. intl. terrorists e.g. organized crime, resources who is willing to take XXX risk sophisticated hackers, intl. corporations Information Value V5: YYY= **V4**: YYY = seriousviolation of the protection policy would cause Risk: airplanes out of exceptionally grave Risk: loss of lives YYY damage to the security, safety, financial service, or damage posture, or infrastructure of the organization airline reputation EAL 6: semiformally **Evaluation Assurance Level EAL 4**: methodically designed, tested, and for the given Treat Level and Information Value verified design and tested reviewed

Evaluating the whole AADS at EAL 6 would be extremely costly. Currently available Public Key Infrastructure (PKI) certified only at EAL 4. Two-level approach: evaluate only LSAP integrity & authenticity at EAL6.

SIEMENS

Overview

- Airplane Assets Distribution System
- Assessment according to the Common Criteria
- Conclusion

Conclusion

SIEMENS

- Challenges for AADS development
 - pioneering system design and architecture
 - complex, heterogeneous, distributed system
 - security is critical for both safety and business
- Common Criteria offer adequate methodology for assessment
- Systematic approach, in particular formal analysis, enhances
 - understanding of the security issues
 - quality of specifications and documentation
 - confidence (of Boeing, customers, FAA, etc.) in the security solutions