

Corporate Technology

Open Source Operating Systems for AADS¹

Notes on quality validation and security certification

¹Airplane Assets Distribution Systems

David von Oheimb and Wolfgang Schmid

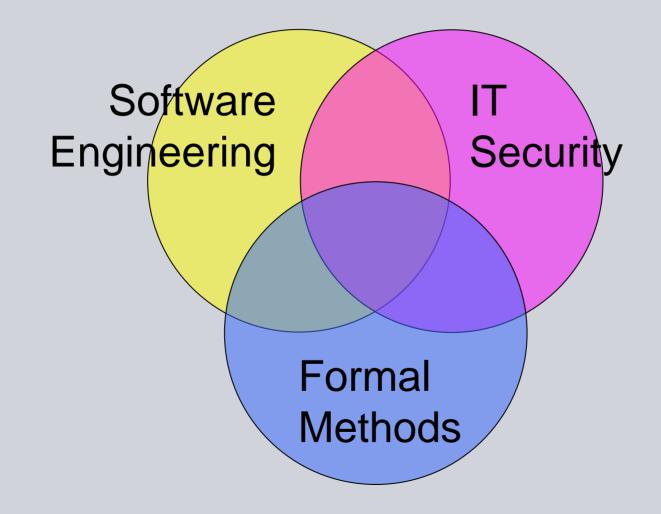
Siemens Corporate Technology, Munich

OpenCert 2007 workshop Braga, Portugal, 31 March 2007

Overview

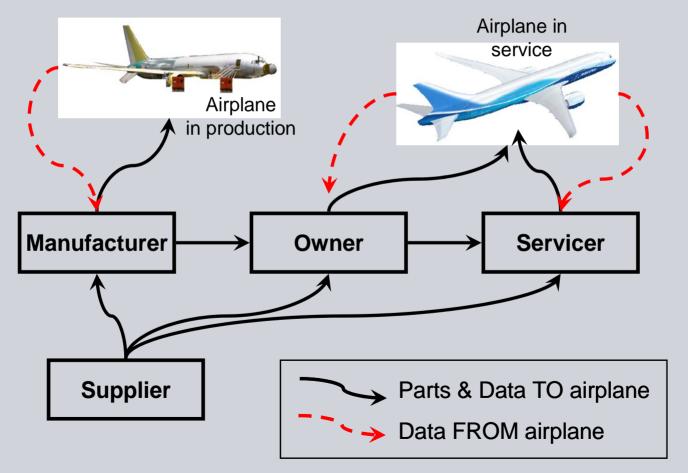
- IT Security at Siemens Corporate Technology
- Airplane Assets Distribution System
- Validation Criteria for OSS Systems
- Survey Results on Current Operating Systems
- Certification According to the Common Criteria

Siemens Corporate Technology: **SIEMENS** About 1,800 Researchers and Developers Worldwide ...


Security Applications & Methods

- **Secure Operating Systems**, Trusted Platform Modules (TPM)
- **General Purpose Identity Management and Authorization**
 - 4 Role / Policy Based Access Control (RBAC)
 - 4 Public Key Infrastructure (PKI), Single Sign-On (SSO)
 - Web Services and Business Process Security
 - Security of Service Oriented Architecture (SOA)
- Application-level security: e-health, e-government, e-Commerce
- Digital Rights Management (DRM)
- **Formal Methods and Certification**

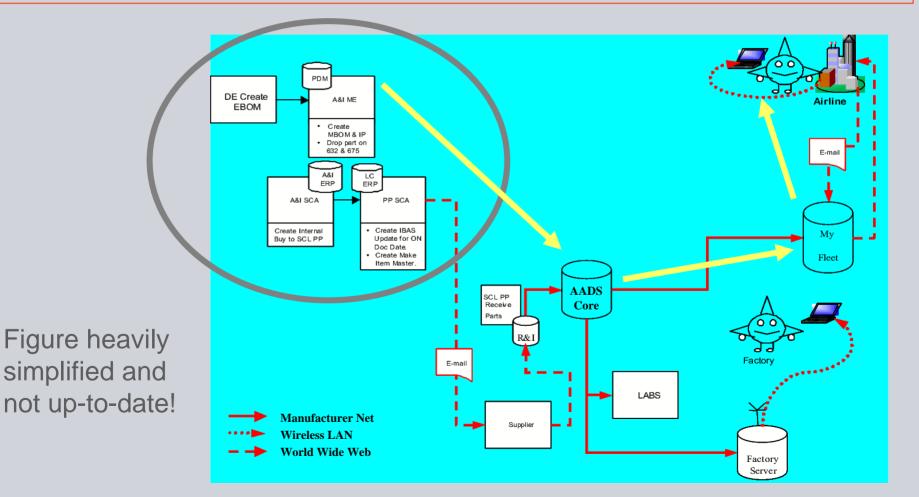
Fields

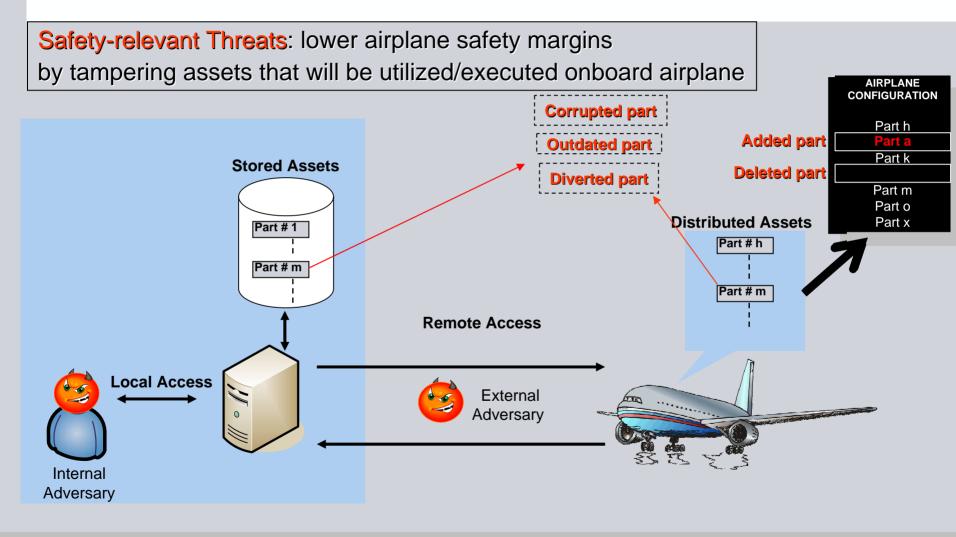


Overview

- IT Security at Siemens Corporate Technology
- Airplane Assets Distribution System
- Validation Criteria for OSS Systems
- Survey Results on Current Operating Systems
- Certification According to the Common Criteria

Airplane Assets Distribution System


AADS is a system for storage and distribution of airplane assets, including *Loadable Software Airplane Parts* and airplane health data



AADS Architecture

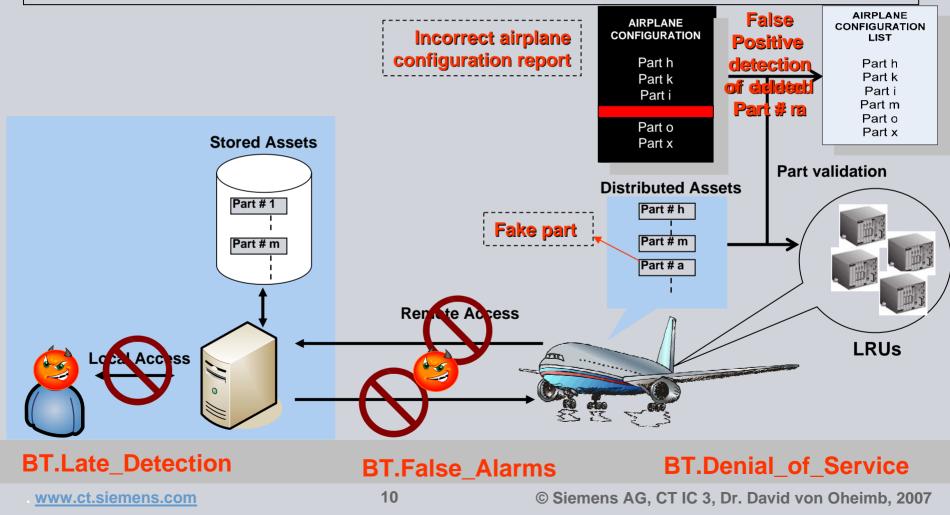
A complex distributed store-and-forward middleware with OSS components

Safety-relevant Threats

ST.Corruption

ST.Staleness

ST.Diversion S


ST.Misconfiguration

www.ct.siemens.com

© Siemens AG, CT IC 3, Dr. David von Oheimb, 2007

Business-relevant Threats

Business-relevant Threats: impede business of airplane production, operation, and maintenance organizations by disrupting airplane service

Security as a SW Engineering Problem

 IT / computer security aims at preventing, or at least detecting, unauthorized actions by agents in a computer system.

complements

safety: absence of damage due to mistakes or other *unintentional* failure

Situation: security loopholes in IT systems actively exploited Objective: thwart attacks by absence of vulnerabilities Difficulty: security is interwoven with the whole system. IT systems are very complex, security flaws hard to find.

Remedy: follow the Common Criteria approach

- address security in all development phases
- do reviews and tests
- make use of formal modeling / analysis

Development Phases and the Benefits of Certification

Requirements analysis:

understanding the security issues

- abstraction: concentration on essentials, to keep overview
- genericity: standardized patterns simplify the analysis

Design, documentation:

quality of specifications

enforces preciseness and completeness

Implementation:

effectiveness of security functionality

demands systematic testing, in part even formal verification

Overview

- IT Security at Siemens Corporate Technology
- Airplane Assets Distribution System
- Validation Criteria for OSS Systems
- Survey Results on Current Operating Systems
- Certification According to the Common Criteria

Deploying Open Source Operating Systems

Motivation

- Use well accepted systems like Linux, Apache, and OpenSSL
- Save license costs for the customers

Criteria

- Stability (reduce patching and certification efforts)
- Security (counter safety and business threats)
- Support of Java (JDK)

Questions

- Which are the alternatives (besides common Linux distributions)?
- What are their pros and cons?

Open Source SW Licenses

Ranking form lower to higher restrictions:

	License	Full Name
1.	ISC License	Internet Systems Consortium (ISC) license
2.	New BSD License	New Berkley Software Distribution License
3.	BSD License	Berkley Software Distribution License
4.	CDDL	Common Development and Distribution License
5.	LGPL	GNU Library or "Lesser" General Public License
6.	GPL	GNU General Public License

Indicators for OSS Quality

How many lines of code does the system encompass?
 The more lines the higher the likeliness of errors.

- How long does the system exist?
 The longer the better (maturity).
- How active are the development mailing lists?
 Shows if the project is alive and vulnerabilities are fixed quickly.
- How large is the user base?
- How frequently is it used per user?
- Is it used within diverse scenarios?

The more use the more likely problems are detected and reported.

Further Criteria

- Development process (anarchic, supervised)?
- Development history
- Use history
- Maintainability
- Is the list of bugs/fixes available?
- Severity of bugs so far?
- How long does it take for a bug to be fixed?

Overview

- IT Security at Siemens Corporate Technology
- Airplane Assets Distribution System
- Validation Criteria for OSS Systems
- Survey Results on Current Operating Systems
- Certification According to the Common Criteria

Linux (various distributions)

Advantages:

- Well known
- Well maintained
- Available for almost all platforms
- Very large group of users
- Very low "Defect Reports/kLOC"
- Certifications according to the Common Criteria

Disadvantages:

- Changes occur frequently and may have substantial impact
- Older (stable) versions do not necessarily gain full attention
- Licensed under the GPL

SELinux: Security Enhanced Linux

Advantages:

- Fine-grained continuous mandatory access control to resources
- Part of the standard Linux kernel
- Extends update intervals

Disadvantages:

Complex setup

OpenBSD Unix

Advantages:

- Long history of the "Berkley Software Distribution"
- Second most popular system within BSD community
- Publicly open development, but continuous code auditing for security problems -> almost no security loopholes over years
- Binary API for Linux and others
- Built-in memory protection, cryptography, and privilege separation
- Licensed under the ISC license

Disadvantages:

- Small user community (after split due to legal problems with AT&T)
- No certifications according to Common Criteria

www.ct.siemens.com

Open Solaris by Sun Microsystems

Advantages:

- High code quality expected (inherited from Solaris)
- Certifications according to Common Criteria

Disadvantages:

- Special license type (CDDL) which is considered to be incompatible with the GPL, which is used for many other Open Source packages
- As an open source project, still premature
- Mailing lists relatively quiet
- Knowledge of source code are scarce within the OSS community

Overview

- IT Security at Siemens Corporate Technology
- Airplane Assets Distribution System
- Validation Criteria for OSS Systems
- Survey Results on Current Operating Systems
- Certification According to the Common Criteria

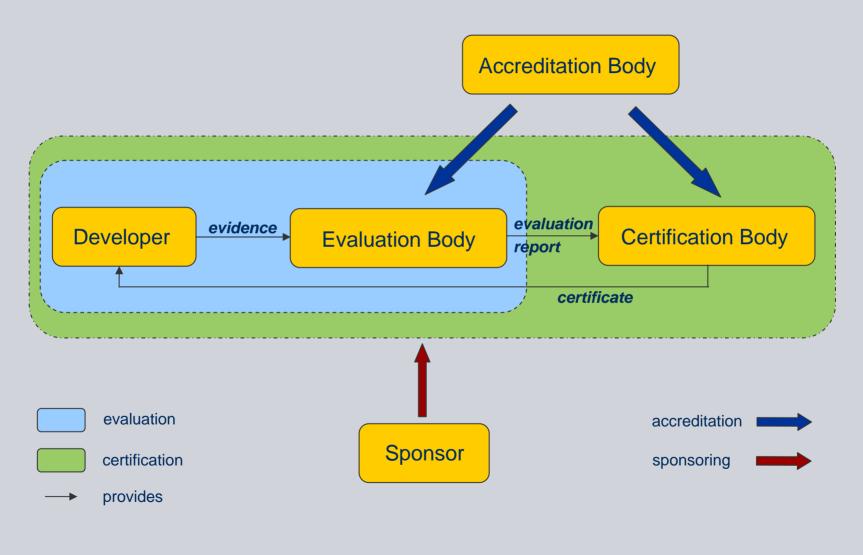
Common Criteria (CC)

product-oriented IT security assessment **ISO**/IEC **standard** 15408 Version 3.1 of 2006

Generic approach ("construction kit" for specifying evaluations):

- Building blocks for defining Security Functional Requirements (SFRs)
- Scalable in depth and rigor: *Evaluation Assurance Levels (EALs)*

CC Certification Aim and General Approach


Aim: gain confidence in the security of a system

- What are the objectives the system should achieve?
- Are the measures employed appropriate to achieve them?
- Are the measures implemented and deployed correctly?

Approach: assessment of the system by neutral experts

- Understanding the security functionality of the system
- Gaining evidence that the functionality is correctly implemented
- Gaining evidence that the integrity/configuration of the system is kept
 Result: a successful evaluation is awarded a certificate

CC Process Scheme

CC Security Target (product-specific) or Protection Profile (generic)

- 1. Introduction (product advertisement)
- 2. System Description: defines Target of Evaluation (TOE)
- 3. Security Environment
 - Assets and related Actions
 - Threats
 - Required Evaluation Assurance Level
 - Assumptions
- 4. Security Objectives
 - ...
 - Rationale wrt. threats
- 5. Security Functional Requirements
 - ...
 - Rationale wrt. objectives

OS Operating Systems certified according to the CC

Security certification according to the Common Criteria is a rather complex, time consuming and expensive task.

System	Assurance Level
SuSE Linux Enterprise Server	up to EAL 4+
Red Hat Enterprise Linux	up to EAL 4+
Sun Solaris	up to EAL 4+

All based on the Controlled Access Protection Profile (CAPP)

Limited in scope (target of evaluation, objectives, etc. in the Security Target). Certifications appreciated as effort to assure quality and security.