
Formal Security Modeling

Dr. David von Oheimb

David.von.Oheimb@siemens.com

ddvo.net

Information & Communications Security

Siemens Corporate Technology

Munich, Germany

Formal Security Modeling, LMU München, SS 2005

David.von.Oheimb@siemens
.com
ddvo.net

David von Oheimb 2

Classification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 3

Contents

• Introduction

• Access Control

-– example: medical database

• Automata for modeling reactive systems

-– example: Infineon SLE66

• Information Flow

-– example: Infineon SLE66

• Cryptoprotocol Analysis

-– example: Needham-Schroeder Protocol

• Evaluation & Certification

-– example: Infineon SLE88

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 4

Material

• Slides: http://www.tcs.ifi.lmu.de/lehre/SS05/Sicherheit/

• Books

� Claudia Eckert: IT-Sicherheit. Oldenbourg, 3rd ed. 2004.

� Matt Bishop: Introduction to Computer Security. Add.-Wes., 2004.

� Dieter Gollmann: Computer Security. Wiley, 2000.

� US Department of Defense. DoD Trusted Computer System

Evaluation Criteria (The Orange Book), DOD 5200.28.STD, 1985.

• Articles

� Heiko Mantel, Werner Stephan, Markus Ullmann, and Roland Vogt:

Leitfaden für die Erstellung und Prüfung formaler Sicherheits-
modelle im Rahmen von ITSEC und Common Criteria.
Bundesamt für Sicherheit in der Informationstechnick (BSI), 2002

Formal Security Modeling, LMU München, SS 2005

http://www.tcs.ifi.lmu.de/lehre/SS05/Sicherheit/

David von Oheimb 5

Papers

• D. Elliot Bell and Leonard J. La Padula: Secure Computer Systems:
Unified Exposition and Multics Interpretation. MITRE Technical

Report. 2997, 1976.

• VR. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman; Role-Based
Access Control Models. IEEE Computer 29(2): 38-47, 1996

• David von Oheimb and Volkmar Lotz: Formal Security Analysis with
Interacting State Machines. ESORICS 2002.

• David von Oheimb, Volkmar Lotz and Georg Walter: Analyzing SLE
88 memory management security using Interacting State Machines.
International Journal of Information Security, 2005.

• John Rushby: Noninterference, Transitivity, and Channel-Control
Security Policies. SRI International Technical Report CS-92-02, 1992.

• David von Oheimb: Information flow control revisited:
Noninfluence = Noninterference + Nonleakage. ESORICS 2004.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 6

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 7

Outline

+ What is Information Security?

• Goals, Threats, and Mechanisms

• Security Policies

• Security Models

• Security Modeling and

Software Engineering

• Conclusions on Security

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 8

Information Security

• IT/Computer security deals with the prevention, or at least detection,

of unauthorized actions or possession by users of a computer system.

� Authorization is central to definition.

� Sensible only relative to a security policy,

stating who (or what) may perform which actions.

• Information security is even more general. It deals with information

independent of computer systems.

Note that information is more general than data. Data represents or

conveys information. But information may also be revealed without

revealing data, e.g., by statistical summaries.

• Constitutes a basic right: protection of self (posessions, ...).

• Complements safety: prevent damage through errors or malfunction

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 9

Security according to Common Criteria

torisk

to reduce wish to minimize

give rise to

wish to abuse and/or may damage

that increase

may be aware of

Owners

Attackers

vulnerabilities

measures

to

threats

value

assets

leading to

reduced by
that may be

that may possess

impose

that exploit

• Classification depicts fundamental concepts and interrelationships.

• Policy (here implicit) defines authorized actions on assets,

i.e., what constitutes legal use (or abuse/damage, respectively).
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 10

Example: email

reduced by

wish

to

that increase

that

assets

Owners

threats

Threat agents

give rise to

countermeasures

vulnerabilities

risk

minimize

exploit
leading to

wish to abuse and/or may damage

to

value

impose

to reduce

that may be

to

that may possess

Assets: Mail

Threats:

• Who sent the mail?

• Has it been received?

• Was the mail read by others during transport?

• Was the mail modified during transport?

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 11

Example: e-voting
reduced by

wish

to

that increase

that

assets

Owners

threats

Threat agents

give rise to

countermeasures

vulnerabilities

risk

minimize

exploit
leading to

wish to abuse and/or may damage

to

value

impose

to reduce

that may be

to

that may possess

Assets: Data, e.g., individual votes, voter identity, results, etc.

Threats: (sample)

• How will the system ensure that only registered voters vote?

• How will it ensure that each voter can only vote once?

• How does the system ensure that votes are not later changed and

are correctly tabulated?

• How are votes kept private and identities secret?

• System availability? Functional correctness?
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 12

E-voting — Swiss requirements

Elektronische Wahl- und Abstimmungssysteme und die elektronische Sammlung
von Unterschriften müssen unter allen Umständen sicher funktionieren und vor
möglichen Gefahren und Einwirkungen von außen geschützt sein. Sie müssen
dabei ebenso viel Sicherheit bieten wie die gegenwärtig geltenden Systeme.
Das bedeutet allerdings nicht hundretprozentige Sicherheit. Auch das geltende
Abstimmungssystem kennt Schwachstellen.

?
?

?
?

Requirements in practice are difficult to formulate precisely.
This is part of the challenge in designing secure systems.
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 13

Outline

• What is Information Security?

+ Goals, Threats, and Mechanisms

• Security Policies

• Security Models

• Security Modeling and

Software Engineering

• Conclusions on Security

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 14

Security Goals

• Goals: CIA

Confidentiality: No unauthorized disclosure/leakage of information

Integrity: No unauthorized modification of information

Availability: No unauthorized impairment of functionality

Note that CIA all require some form of authorization,

which consists of some form of authenticationand access control.

• Other goals

Privacy: User data is only exposed in permitted ways.

Nonrepudiation: One cannot deny responsibility for actions.

Also called accountability
Application specific requirements: E.g.,

e-voting must suitably combine above!

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 15

Threats

Interception

Modification

Confidentiality

Fabrication

InterruptionAvailability

access to information
Unauthorized party gains

Generation of additional

Unauthorized tampering
of data or services

unavailable or unusable
Service or data becomes

data or activitiesIntegrity

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 16

Security Mechanisms

Let’s consider how different mechanisms can be used to achieve

goals in the face of threats, and what some of the challenges are.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 17

Confidentiality/Privacy

Example Email is not a letter

but rather a post card!

Threat Everyone can read it along the way!

Mechanism Network security, encryption, and access control

Challenges Key and policy management

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 18

Data integrity

Example Email (or forms, records, ...)

Threat Unallowed modification/falsification

Mechanism Digital signatures and/or access control

Challenges PKI and policy management

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 19

Availability

Example Communication with a server

Threats Denial of Service, break-ins, ...

Mechanism Fire-walls, virus-scanners,

backups, redundant hardware, secure

operating systems, etc.

Challenges Difficult to cover all threats

(and still have a usable system)

Also difficult to test/verify, because

availability is a liveness property:

“something good eventually happens”,

while all others are safety properties:

“something bad never happens”

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 20

Authentication: who is who?

Example

Threats Misuse of identity

Mechanisms

Credentials of requester: personal characteristics (biometric),

what one has (smartcard), or what one knows (password).

Processes, Data : cryptographic protocols, digital signatures, etc.

Challenges authentication hardware/mechanisms,

protocol design/analysis, PKIs

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 21

Access Control (AC): who has what permission?

Example Access to data, processes, networks, ...

Threats Unauthorized access of resources

Mechanisms Declarative and programmatic control mechanisms

Security
Admin

User

Authorization
Database

Objects

AUTHENTICATION ACCESS CONTROL

AUDITING

Reference
Monitor

Challenges Policy design, integration, and maintenance

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 22

AC: Authorization and Auditing

Security
Admin

User

Authorization
Database

Objects

AUTHENTICATION ACCESS CONTROL

AUDITING

Reference
Monitor

Authentication establishes/verifies identity of requester.

Authorization decides whether legitimate (authenticated) requester

is allowed to perform the requested action.

Auditing gathers data to discover violations or diagnose their cause.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 23

A few words about auditing

Security
Admin

User

Authorization
Database

Objects

AUTHENTICATION ACCESS CONTROL

AUDITING

Reference
Monitor

• Two components:

� collection and organization of audit data,

� analysis of data to discover or diagnose security violations.

• Intrusion detection:

� Passive: offline analysis to detect possible intrusions or violation.

� Active: real time analysis to take immediate protective response.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 24

A few words about auditing (cont.)

• Questions:

� How to determine what has to be audited?

� What to look for in audit log data?

� How to determine violation automatically?

• Possible solutions:

� Anomaly detection: the exploitation of the vulnerabilities involves

abnormal use of the system.

� Misuse detection: based on rules specifying sequences of events or

observable properties of the system, symptomatic of violations.

• Auditing data needs protection from modification by an intruder.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 25

Summary: Goals, Threats, and Mechanisms

• Standard breakdown. Important for analyzing system security relative

to a policy.

• Designing adequate mechanisms is challenging.

• One must take a holistic approach to security engineering.

� Security must be co-designed with the system, not added on.

� One must be cognizant of the tradeoffs and costs involved.

• There are many open questions, both at the level of mechanisms and

the design/integration process.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 26

Outline

• What is Information Security?

• Goals, Threats, and Mechanisms

+ Security Policies

• Security Models

• Security Modeling and Software Engineering

• Conclusions on Security

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 27

An example: university computing

• IT security policy:

A student has full access to information that he or she created.

Students have no access to other students’ information unless

explicitly given. Students may access and execute a pre-defined

selection of files and/or applications. ...

• Security policy describes access restrictions.

• Issues

� How do we formalize such a policy?

� What mechanisms would we use to enforce it?

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 28

Two more examples

• E-Banking

A bank customer may list his account balances and recent transactions. He may
transfer funds from his accounts provided his total overdraws are under 10,000.
Transfers resulting in larger overdraws must be approved by his account manager. ...

Above policy describes restrictions where objects here include both

data and processes.

• Privacy policies A clerk may only have access to personal data if this access is
necessary to perform his/her current task, and only if the clerk is authorized to
perform this task.
In addition, the purpose of the task must correspond to the purposes for which the
personal data was obtained or consent must be given by the data owners.

Combines conditions with obligations on how data will be used.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 29

Security Policies

• A security policy defines what is allowed.

It defines those executions (actions, data flow, etc.)

of a system that are acceptable,

or complementarily, those that are not acceptable.

� Typically defines a relationship between subjects and objects.

� It is analogous to a set of laws.

� Typically defined as high-level requirements.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 30

CIA as security policies
Let S be a set of subjects and I some information (or a resource).

Confidentiality: I has the property of confidentiality with respect to S

if only members of S can obtain information about I.

Integrity: I has the property of integrity with respect to S

if all members of S can trust I.

Members of S can trust information I if the conveyance and storage

of I did not change the information (data integrity). If I contains

information about the origin of something, or identity of someone,

then this information must be correct and unchanged (origin integrity

or authentication).

Availability: I has the property of availability with respect to S

if all members of S can access or use I.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 31

Outline

• What is Information Security?

• Goals, Threats, and Mechanisms

• Security Policies

+ Security Models

• Security Modeling and Software Engineering

• Conclusions on Security

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 32

Security Models

• A security model is a formal description

of a system and a policy (or of a family of policies).

N.B.: model is overloaded in literature.

E.g., formal policy, security mechanisms, semantic models, ...

• How are (un)acceptable executions specified?

Usually in terms of system state or sequences of states (traces).

• Models usually focus on specific characteristics of policies.

• We will consider

� Access Control models

� Information Flow models

� Cryptoprotocol models

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 33

What are Formal Methods?

• A language is formal if it has a well-defined syntax and semantics.

Examples: Predicate logic, automata, λ−calculus, process algebra,

. . .

• A model is formal if it is specified with a formal language.

Example:

∀x. bird(x)→ flies(x) bird(tweety)

• A proof is formal if it is done using a deductive system

(i.e., a set of precise rules governing each proof step).

Examples: Tableau calculus, axiomatic calculus, term rewriting, . . .

• A formal proof is machine-assisted if

it is performed, or at least checked, by an IT system.

Examples: OFMC (model checker), Isabelle (theorem prover)
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 34

Access Control models

• Discretionary vs. mandatory AC models.

• Various types of models:

� Models can capture policies

for confidentiality (Bell-LaPadula)

or for integrity (Biba, Clark-Wilson).

� Some models apply to static policies (Bell-LaPadula),

others consider dynamic changes of access rights (Chinese Wall).

� Security models can be informal (Clark-Wilson),

semi-formal, or formal (Bell-LaPadula).

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 35

Information Flow models

• Identify domains holding information

• Specify allowed flow between domains

• Check the observations that can

be made about state and/or actions

• Consider also indirect and partial flow

• Classical model: Noninterference

(Goguen & Meseguer)

• Many variants: Non-deducability, Restrictiveness, Nonleakage, ...

downgr.

public

secret

confidential

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 36

Cryptoprotocol models

• Describe message traffic between processes or principals

Yes.

Is it you, Alice?

• Take cryptographic operations as perfect primitives

• Are specified with by domain-specific languages (e.g. HLPSL)

• Describe secrecy, authentication, . . . goals

• Are typically verified automatically using model-checkers

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 37

Protection state

• A state of a system is the collection of current values of all memory

locations, storage, registers, and other components.

• The substate addressing security is the system protection state.

• Examples of protection states

File system: part of system state determining who is reading/writing

files, access control information, etc.

Network: e.g., packet header information (identifying protocols) and

packet locations, internal firewall states, etc.

Program: e.g., part of run-time image corresponding to

program counter, call stack, memory management tables, etc.

• Abstraction: system execution described

as transitions between protection states

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 38

Protection state and security policy
• Let P be the system state space and Q ⊆ P be the states

in which system is authorized to reside in.

� A state s ∈ Q is called authorized (or secure),

� any s ∈ P \Q is called unauthorized (or nonsecure).

• A security policy characterizes Q.

Hence a security policy partitions the states of the system into

authorized (or secure) states, and unauthorized (or nonsecure) states.

• A security mechanism prevents a system from entering P \Q.

A secure system is a system that starts in an authorized state and

cannot enter an unauthorized state.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 39

Example 1: Kerberos Kerberos

Authentication
server (KAS)

Ticket
granting
server (TGS)

• Provides Single Sign-On mechanism in a distributed setting.

• Partitions authentication, authorization, and access control.

Security policy: expresses which users can access what servers in a

realm (or cross-realm).

The policy is determined by the system administrator who registers

users/servers in the database.

Security mechanism: Kerberos and kerberized application front-ends.

Protection state: Kerberos server state (e.g., policy tables),

state of protocol runs, client state, server state.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 40

Example 2: security policy for proprietary data
Security policy for company X

All information on product Y is confidential: it may only be read or modified

by a subgroup Z and the system administrators.

Mechanism implications

• All printouts must be securely stored or shredded.

• All computer copies must be protected (AC, cryptography, ...)

• As company X stores its backup tapes in a vault in the town bank, X

must ensure that only authorized employees have access to these tapes.

Hence the bank’s control on access to the vault and the procedures used to

transport tapes to/from the bank are considered as security mechanisms.

The security mechanisms are not only technical controls, but also procedural

or operational controls.

Protection state
Not just the IT state, but also existence and location of physical goods.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 41

Outline

• What is Information Security?

• Goals, Threats, and Mechanisms

• Security Policies

• Security Models

+ Security Modeling and Software Engineering

• Conclusions on Security

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 42

Security as a Software Engineering Problem

Situation: security loopholes in IT systems will be actively exploited

— in this sense even worse than safety problems!

Goal: achieve absence of attacks by absence of vulnerabilities

— and convince contractors/customers/users of this!

Problem: IT systems are very complex, security flaws hard to find.

Remedy: address security in all development phases.

Reviews supported by formal security modeling/analysis.

During ...

• requirements analysis: helps understanding the security issues

• design, documentation: helps improving the quality of specifications

• implementation: acts as correctness reference for

testing/verification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 43

Why are Formal Security Models so helpful?

A formal security model is an abstract formal description of a system

(and its environment) that focuses on the relevant security issues.
M BA

M

{ N , A }K

{ N , A }K

{ N , N , }K

A

A B

M

A B{ N , N , }KB

A B

A

A

Interpretation

Abstraction

Its advantages/goals are:

• improves understanding of security by abstraction:

simplification and concentration on the essentials

• prevents ambiguities, incompleteness, and inconsistencies

and thus enhances quality of specifications

• provides basis for systematic testing or even formal verification

and thus validates correctness of implementations

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 44

Modeling considerations

Abstraction Level: should be ...

• high enough to achieve clarity

• low enough not to loose important detail

refinement allows for both high-level and detailed description

Formality Level: should be adequate:

• the more formal, the more precise,

• but requires deeper mastering of formal methods

Choice of Formalism: dependent on ...

• application domain, modeler’s experience, tool availability, ...

• formalism should be simple, expressive, flexible, mature

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 45

Outline

• What is Information Security?

• Goals, Threats, and Mechanisms

• Security Policies

• Security Models

• Security Modeling and

Software Engineering

+ Conclusions on Security

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 46

Conclusions

• Security is an enabling technology.

• Security is a cross-section topic.

Formal Methods

Networks Cryptography Operating Systems

Software EngineeringDistributed Computing

Legal Context Business Processes

IT Security

• Security is difficult.

... and therein lies the challenge, excitement, and reward!

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 47

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 48

Outline

+ Access Control (AC)

• Discretionary Access Control (DAC)

• Mandatory Access Control (MAC)

• Access Control Matrix Model

• Role-Based Access Control (RBAC)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 49

Access control

Many security policies (and mechanisms) focus on access control.

Access Control:
Protection of system resources against unauthorized access;

a process by which use of system resources is regulated

according to a security policy that determines authorized access.

certain subjects (entities, e.g. users, programs, processes)

have permissions (e.g. rwx)
on objects (e.g. data, programs, devices)

according to AC policies.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 50

AC Policies vs. AC Mechanisms

• Policy: specifies (un-)authorized accesses of a system

and how access decisions are determined.

� Discretionary AC.

� Mandatory AC.

� Role-based AC.

• Mechanism (structure): implements or enforces a policy.

� Access matrix.

� AC list (ACL).

� Capability list.

This distinction allows for abstraction and independence.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 51

Access control — typical mechanisms

• System knows who the user is, i.e. authentication is done.

• Access requests pass through a gatekeeper (“reference monitor”).

Security
Admin

User

Authorization
Database

Objects

AUTHENTICATION ACCESS CONTROL

AUDITING

Reference
Monitor

OS must be designed that way: MMU, file system, firewall, . . .

OS-level AC provides basis for application-specific mechanisms.

• We will now look at several different access control models.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 52

Outline

• Access Control (AC)

+ Discretionary Access Control (DAC)

• Mandatory Access Control (MAC)

• Access Control Matrix Model

• Role-Based Access Control (RBAC)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 53

Discretionary Access Control (DAC)

• Premise: users are owners of resources and are responsible for

controling their access.

• The owner of information or a resource is able to change its

permission at his or her discretion. Owners can usually also transfer

ownership of information to other users.

• Flexible, but open to mistakes, negligence, or abuse.

� Requires that all system users understand and respect security policy

and understand AC mechanisms.

� Abuse, e.g. Trojan horses may that trick users into transferring rights.

• Dissemination of information is not controlled:

a user who is able to read data can pass it to other users not

authorized to read it without cognizance of the owner.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 54

Types of DAC policies

• Closed DAC policies: authorization must be explicitly specified,

since the default decision of reference monitor is denial.

• Open DAC policies: specify denials instead of permissions

(default decision is access).

• Combination of positive and negative authorizations possible

(but quite complex).

Example: Deny in Windows XP

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 55

A DAC example: Unix

• Unix provides a mechanism suitable for a restricted class of DAC policies.

� Controls access per object using permission scheme owner/group/other.
� Permission bits assigned to objects by their owners.

-rw-r--r-- 1 luca softech 56643 Dec 8 17:19 file1.tex drwxrwxrwt 26
root root 4096 Dec 9 22:27 /tmp/ -rwsr-xr-x 1 root shadow 80036 Oct
3 11:08 /usr/bin/passwd*

• Not all policies can be directly mapped onto this mechanism.

How would we express that a patient can read his medical records at a hospital?
Who owns the records? In which group is the patient?

• Supports limited delegation of rights using suid (“set user identification”) [or sgid].

� Executor takes on owner’s user [or group] identity during execution.
� Example: normal users “upgraded” to root privileges to change their passwords in

the password file.
� Open to abuse and the cause of many security holes.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 56

Outline

• Access Control (AC)

• Discretionary Access Control (DAC)

+ Mandatory Access Control (MAC)

• Access Control Matrix Model

• Role-Based Access Control (RBAC)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 57

Mandatory Access Control (MAC)

• System wide access restrictions to objects.

Mandatory because subjects may not transfer their access rights.

• AC decisions controlled by comparing

security labels indicating sensitivity/criticality of objects, with

formal authorization, i.e. security clearances, of subjects.

• Example from military: users and objects assigned a clearance level

like confidential, secret, top secret, etc. Users can only read [write]

objects of equal or lower [higher] levels.

• More rigid than DAC, but also more secure.

• Concrete examples (like Bell-LaPadula) later.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 58

MAC: Linear Ordering

Confidential

Top secret

Secret

Unclassified

Write up

Read down

Two principles are required to hold for confidentiality:

• Read down: a subject’s clearance must dominate (i.e. ≥)

the security level of the object being read.

• Write up: a subject’s clearance must be dominated by (i.e. ≤)

the security level of the object being written.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 59

MAC: Linear Ordering (cont.)

Confidential

Top secret

Secret

Unclassified

Write up

Read down

• Problems:

� It allows to send email “up”, but is often restricted only to same

level (i.e. =) to avoid “blind overwriting”.

� It does not allow a subject to write “lower” data; to that end a

subject should be enabled to dynamically decrease its level.

• Can be applied similarly for integrity: read up and write down:

Protected

Unrestricted

Read up

Write down

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 60

MAC: Ordering generalized

Def: a partial ordering (L,v) on a set L is a binary relation on L

(i.e. a subset of L× L) that is reflexive, antisymmetric, and transitive.

Example: Hasse diagram of company secrets

Strategic

Product1 Product2 Product3

Techn2

Public

Techn1

Questions:

• Given 2 objects at different security levels, what is the minimal level

a subject must have to be allowed to read both objects?

• Given 2 subjects at different security levels, what is the maximal level

an object can have so that it still can be read by both subjects?

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 61

MAC: The Lattice of Security Levels

Def: a lattice (L,v) is a partial ordering (L,v) on a set (of security

levels) L, so that for every two elements a, b ∈ L there exists

a least upper bound u ∈ L and a greatest lower bound l ∈ L, i.e.

a v u and b v u and ∀u′ ∈ L. (a v u′ ∧ b v u′)→ u v u′

l v a and l v b and ∀l′ ∈ L. (l′ v a ∧ l′ v b)→ l′ v l

We write lub({a, b}) or atb for u

and glb({a, b}) or aub for l.

Examples:

• the linear ordering on the naturals: (N,≤)

• the subset ordering on powersets: (℘(S),⊆)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 62

Example (from DoD’s Orange Book)
• A set H of classifications with a hierarchical (linear) ordering ≤.

• A set C of categories, e.g. project names, company divisions, etc.

• A security label is a pair (h, c) with h ∈ H and c ⊆ C.

• Partial order of labels: (h1, c1) v (h2, c2) iff h1 ≤ h2 and c1 ⊆ c2.

For hierarchical levels

public and private, and

categories PERSONNEL

and ENGINEERING, we

have the lattice:

Note that

public,{PERSONNEL} 6v
private,{ENGINEERING}.

private, {PERSONNEL, ENGINEERING}

private, {PERSONNEL} private, {ENGINEERING}

public, {PERSONNEL, ENGINEERING}

private, {}

public, {PERSONNEL}

public, {}

public, {ENGINEERING}

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 63

Outline

• Access Control (AC)

• Discretionary Access Control (DAC)

• Mandatory Access Control (MAC)

+ Access Control Matrix Model

• Role-Based Access Control (RBAC)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 64

Access Control Matrix Model

• Simple framework for describing a protection system by describing the

permissions of subjects on objects.

Subjects: users, processes, agents, groups, ...

Objects: files, memory banks, other processes, ...

Permissions (or rights): read, write, execute, print, ...

• Policy is a finite relation P ⊆ Subjects× Objects× Permissions

Objects

Permissions

Subjects

Own
R
W

Own
R
W

R
W

Inquiry
Credit

Inquiry
Debit

Inquiry
Credit

Inquiry
Debit

File 1 File 2 File 3 File 4 Account 1 Account 2

Own
R
X

W
XAlice

Bob

Charlie R

RR W

given as a matrix.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 65

AC Matrix Model — formal definitions (I)

• A state (or: configuration) is a triple X = (S, O, M):

S ⊆ Subjects: Set of subjects.

O ⊆ Objects: Set of objects.

M : Subjects×Objects→ ℘(Permissions): a matrix defining the

protection state, i.e. the permissions for each (s, o) ∈ S ×O

where M(s, o) := {p ∈ Permissions | (s, o, p) ∈ P}

• State transitions described by commands (members of a set Com) like

� enter permission p into M(s, o)
� create subject s

� destroy object o

These transform one state into another by changing its parts.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 66

AC Matrix Model — formal definitions (II)

• Write X ;c X ′ to denote a state transition associated with c,

where c ∈ Com is a command.

• A starting state X0 = (S0, O0,M0) and the transition relation ;

determine a state-transition system. b
aa

c

• So a model describes a set of (possible) system traces,

namely (finite) sequences of transitions

X0 ;c1 X1 ;c2 X2 . . . ;cn Xn

where all Xi ∈ State and all ci ∈ Com.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 67

Access matrix — policy example
Own

R
W

Own
R
W

R
W

Alice

Bob

Charlie
Own

R
X

W
X

R

RR W

File 1 File 2 File 3 File 4

Policy: A subject has read access to a file only if the permission R was

initially present or has been explicitly granted by the file’s owner.

Formalization:
For any s1, s2 ∈ Subjects and o1 ∈ Objects,

confer read(s2, s1, o1) ∈ Com is a command whose effect on the state is

(S, O, M) ;confer read(s2,s1,o1) (S, O, M ′) where

(∀s, o. M ′(s, o) = (if (s, o) = (s1, o1) then M(s, o)∪{R} else M(s, o))).

Let X0 ;c1 X1 . . . ;cn Xn be a system trace. State Xn is authorized iff

∀s′, o′. R ∈Mn(s′, o′)→ (R ∈M0(s′, o′) ∨
(∃k < n, s. Xk ;confer read(s,s′,o′) Xk+1 ∧ Own ∈Mk(s, o′))).

Security Objective: the system is secure, i.e. all reachable states are

authorized, i.e. for all traces X0 ;c1 X1 . . . ;cn Xn the Xn is authorized.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 68

Access matrix — policy example (cont.)
Own

R
W

Own
R
W

R
W

Alice

Bob

Charlie
Own

R
X

W
X

R

RR W

File 1 File 2 File 3 File 4

Solution: For each transition that gives new read access to an object, access control
checks that this has been done by the owner of the object using confer read. Formally:

Let X = (S, O, M) and X ′ = (S′, O′,M ′) be two states and c a command.
The transition X ;c X ′ is locally acceptable iff (R 6∈M(s′, o′) ∧ R ∈M ′(s′, o′))→
(∃s. c = confer read(s, s′, o′) ∧ Own ∈M(s, o′)).

Theorem: If access control makes sure that only locally acceptable transitions take
place, then all reachable states are authorized, i.e. the system is secure. Formally:

For any trace X0 ;c1 X1 . . . ;cn Xn, if Xi ;ci+1
Xi+1 is locally acceptable for all i,

then Xn is authorized for all n.

Proof: Assume that all transitions Xi ;ci+1
Xi+1 are locally acceptable.

Show by induction on n that Xn is authorized.

Base case: X0 is trivially authorized.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 69

Access matrix — policy example (cont.)
Own

R
W

Own
R
W

R
W

Alice

Bob

Charlie
Own

R
X

W
X

R

RR W

File 1 File 2 File 3 File 4

Induction step: Take any trace X0 ;c1 X1 . . . ;cn+1 Xn+1. We can assume

that Xn is authorized and have to show that Xn+1 is authorized.

Choosing any s′ and o′ such that R ∈Mn+1(s′, o′),
it remains to show R ∈M0(s′, o′) ∨ (∃k < n + 1. Q(k))
where Q(k) := (∃s. Xk ;confer read(s,s′,o′) Xk+1 ∧ Own ∈Mk(s, o′)).
We consider two cases.

1. R ∈Mn(s′, o′), i.e. R did not change.

From the ind. hypothesis, we conclude R ∈M0(s′, o′) ∨ (∃k < n. Q(k)).
Now R ∈M0(s′, o′) ∨ (∃k < n + 1. Q(k)) follows immediately.

2. R 6∈Mn(s′, o′), i.e. R is newly set in Mn+1(s′, o′).
Since the transition Xn ;cn+1 Xn+1 is locally acceptable, we can infer

∃s. cn+1 = confer read(s, s′, o′) ∧ Own ∈Mn(s, o′)).
Thus we have Q(n) and therefore R ∈M0(s′, o′) ∨ (∃k < n + 1. Q(k)).

2
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 70

Access matrix — policy example with Isabelle

Isabelle: generic interactive theorem proving system

HOL: higher-order logic, mixture of predicate logic and λ-calculus

ProofGeneral: XEmacs mode for Isabelle etc., used in live demo now

theory AC_matrix = Main:

typedecl Subject

typedecl Object

datatype Permission = Own | R | other_Permissions

types Protection_State = "Subject × Object ⇒ Permission set"

State = "Subject set × Object set × Protection_State"

datatype Com = confer_read "Subject × Subject × Object"

| other_Coms

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 71

Access matrix — policy example with Isabelle: traces
For simplicity, only one trace, of unbounded length
consts X :: "nat ⇒ State"

C :: "nat ⇒ Com" — 0-th command unused
syntax
"X_" :: "nat ⇒ State" ("X ")

"S_" :: "nat ⇒ Subject" ("S ")

"O_" :: "nat ⇒ Object" ("O ")

"M_" :: "nat ⇒ Protection_State" ("M ")

"C_" :: "nat ⇒ Com" ("C ")

translations
"Xn"
 "X n"

"Sn"
 "fst Xn"

"On"
 "fst (snd Xn)"

"Mn"
 "snd (snd Xn)"

"Cn"
 "C n"

consts transition :: "State ⇒ Com ⇒ State ⇒ bool" ("(_ ;_. _)")

constdefs is_trace :: "bool"

"is_trace ≡ ∀ n. Xn ;C (n+1). X (n+1)"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 72

Access matrix — policy example with Isabelle: misc

axioms transition_confer_read: — unused
"(S,O_,M) ;confer_read(s2,s1,o1).

(S,O_,(λ(s’,o’). if (s’,o’) = (s1,o1) then M(s’,o’) ∪ {R} else M(s’,o’)))"

constdefs authorized :: "nat ⇒ bool"

"authorized n ≡ ∀ s’ o’.

R ∈ Mn (s’,o’) −→
R ∈ M0 (s’,o’) ∨ (∃ k<n. ∃ s. C (k+1) = confer_read(s,s’,o’) ∧ Own ∈ Mk (s,o’))"

constdefs locally_acceptable :: "nat ⇒ bool"

"locally_acceptable i ≡ ∀ s’ o’.

(R /∈ M i (s’,o’) ∧ R ∈ M (i+1) (s’,o’)) −→
(∃ s. C (i+1) = confer_read(s,s’,o’) ∧ Own ∈ M i (s,o’))"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 73

Access matrix — policy example: Isabelle proof script

“Classcial” tactic style, “proof assembly language”

theorem system_safe: " [[is_trace; ∀ i. locally_acceptable i]] =⇒ ∀ n. authorized n"

apply (rule allI)

apply (rule nat.induct)

apply (unfold authorized_def)

apply (fast)

apply (rule allI, rule allI, rule impI)

apply (case_tac "R ∈ Mna (s’, o’)")

apply (drule spec, drule spec, erule (1) impE, erule disjE)

apply (erule disjI1)

apply (rule disjI2)

apply (erule exE, erule conjE)

apply (rule_tac x = k in exI)

apply (blast intro: less_SucI)

apply (simp add: locally_acceptable_def)

apply (drule spec, drule spec, drule spec, erule impE, erule (1) conjI)

apply (rule disjI2)

apply (rule_tac x = na in exI)

apply (blast)

done

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 74

Access matrix — policy example: Isabelle ISAR proof

Mostly automatic proof
theorem system_safe: " [[is_trace; ∀ i. locally_acceptable i]] =⇒ authorized n"

apply (rule nat.induct)

apply (simp_all add: authorized_def locally_acceptable_def)

apply (blast intro: less_SucI)+

done

Intelligible Semi-Automatic Reasoning
theorem system_safe: " [[is_trace; ∀ i. locally_acceptable i]] =⇒ ∀ n. authorized n"

proof
fix n

assume local_accept: "∀ i. locally_acceptable i"

show "authorized n"

proof (induct n, simp_all only: Suc_plus1)

show "authorized 0" by (unfold authorized_def, fast)

next
fix n

assume ind_hyp: "authorized n"

show "authorized (n+1)"

proof (unfold authorized_def, rule, rule, rule)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 75

fix s’ o’

assume assumpt: "R ∈ M (n+1) (s’, o’)"

let ?Q = "λk. ∃ s. C (k+1) = confer_read (s, s’, o’) ∧ Own ∈ Mk (s, o’)"

show "R ∈ M0 (s’, o’) ∨ (∃ k<n+1. ?Q(k))"

proof cases

assume "R ∈ Mn (s’, o’)"

with ind_hyp have "R ∈ M0 (s’, o’) ∨ (∃ k<n. ?Q(k))"

by (unfold authorized_def, fast)

then show ?thesis by (simp, blast intro: less_SucI)

next
assume "R /∈ Mn (s’, o’)"

with local_accept assumpt

have "∃ s. C (n+1) = confer_read (s, s’, o’) ∧ Own ∈ Mn (s, o’)"

by (simp add: locally_acceptable_def)

hence "?Q(n)" .
thus "R ∈ M0 (s’, o’) ∨ (∃ k<n+1. ?Q(k))" by (simp, fast)

qed
qed

qed
qed

end

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 76

Access matrix: data structures

• Matrices define access rights.

• Different possible realizations as mechanism.

Access Matrix AC List (ACL) Capabilities List

Own
R
W

Own
R
W

R
W

Alice

Bob

Charlie
Own

R
X

W
X

R

RR W

File 1 File 2 File 3 File 4

Own
R
W

Alice

W
X

Own
R

Charlie

X

Own
R
W

R

W

R

R

R
W

File 2

File 3

File 4

File 1 Alice Bob Charlie

Bob Charlie

Bob

Bob

R

File 2

File 1

Bob

R

Charlie

Alice File 3

R

File 2

Own
R
W X

W

File 1 File 3

Own

W
R W R

File 4

W

File 1

Own
R
X

File 4

Represent as 2-dimensional objects or set of 1-dimensional objects.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 77

Access-control (authorization) list
• ACL: use lists to express view of each object o:

ith entry in the list gives the name of a subject si

and the rights ri in M(si, o) of the access-matrix.

• Standard example: AC for files.

User ID Rights

file
F

ACL for F
File Directory

F
Alice Own, RW
Bob RW
Charlie R
John R

Owner has the sole authority to grant, revoke or

decrease access rights to F to other users.

Exception in UNIX: superuser (“root”) always

has full access and can change all access rights.

Own
R
W

Alice

W
X

Own
R

Charlie

X

Own
R
W

R

W

R

R

R
W

File 2

File 3

File 4

File 1 Alice Bob Charlie

Bob Charlie

Bob

Bob

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 78

Capability list

Own
R
X

R
W

File 1Charlie File 2 File 4

R

• Subject view of AC matrix.

• Less common than ACLs.

� Not so compatible with object oriented view of the world.

� Difficult to get an overview of who has permissions on an object.

� Difficult to revoke a capability for a set of users. E.g., chmod o-rwx *

• Application in distributed setting (e.g., mobile agent, Kerberos).

Users are endowed with credentials (e.g., from a credential server)

that they present to network objects.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 79

Outline

• Access Control (AC)

• Discretionary Access Control (DAC)

• Mandatory Access Control (MAC)

• Access Control Matrix Model

+ Role-Based Access Control (RBAC)

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 80

Why RBAC?

• How do we formalize a policy when there are 103 − 106 subjects and

objects? AC matrices do not scale!

• Overcome using standard tricks: abstraction and hierarchy.

Abstraction: Many subjects (or objects) have identical attributes, and

policy is based on these attributes.

Hierarchy: Often functional/organizational hierarchies that determine

access rights.

• Approach to RBAC: decompose subject/object relationship by

introducing a set of roles. Then assign subjects to roles and

permissions to objects based on role. I.e.,

(s, o, p) ∈ P iff s has role r and r has permission p on object o.

• This idea can be generalized by introducing a hierarchy on roles.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 81

Role-Based Access Control (RBAC)

• Rights are associated with roles, and users are
made members of appropriate roles.

⇒ Simpler management of rights:

� Access decisions based on roles that users have
as part of an organization (e.g. hospital).

� Roles can have overlapping responsibilities and
rights.

� Roles can be updated without updating the
rights of every user on individual basis.

� Enterprise-specific security policies.

• Closely related to concept of user groups:
a role brings together

� a set of users on one side (as in groups) and
� a set of rights.

person

research

statistics

doctor

day nurse night nurse

head nurse

nurse

medical administration

senior physician

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 82

Role-Based Access Control (RBAC) (cont.)

• Role hierarchies simplify policy expression.

• Example:

� A member of role Senior has also all permissions
defined by Doctor.

� A Senior may delegate a task to a Doctor.
� A member of roles Doctor or Patient can only

access those resources allowed under his role(s).

• Needed by enforcement mechanism:

� Rules for role assignment/authorization,
and for permission assignment.

� Also: rules for delegation.

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

User 4

User 5

User 6

User 7

P,W

R

R

R

P

Doctor

R

Senior

Patient

User 1

User 2

User 3

member_of

R,P

R,W

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 83

RBAC formalization: overview

RBAC0 : plain

RBAC1 : with role hierarchy

RBAC2 : with constraints

RBAC3 : with both

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 84

RBAC formalization: RBAC0 and RBAC1

RBAC0 : plain

users: U

roles: R

permissions: P

user assignment: UA ⊆ U ×R

permission assignment: PA ⊆ R× P

sessions: AR ⊆ UA (active roles, note the restriction!)

access: can exec = AR ◦ PA ⊆ U × P ,

i.e. (u, p) ∈ can exec = ∃r. (u, r) ∈ AR ∧ (r, p) ∈ PA

RBAC1 : with role hierarchy

role hierarchy: RH ⊆ R×R, antisymmetric

sessions: AR ⊆ UA ◦ RH∗ (redefined active roles)

where X∗ = I ∪X ∪X ◦X ∪ ... is the reflexive-transitive closure

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 85

RBAC formalization: RBAC2

RBAC2 : with constraints, for instance:

static separation of duty: SSD ⊆ R×R

example: (treasurer, auditor) ∈ SD

constraint: UA−1 ◦ UA ⊆ SSD ∪ SSD−1, i.e.

((u, r) ∈ UA ∧ (u, r′) ∈ UA) −→ ((r, r′) /∈ SSD ∧ (r′, r) /∈ SSD)
where Z−1 = {(y, x). (x, y) ∈ Z} is inversion,

Z = {(x, y). (x, y) /∈ Z} is complementation

dynamic separation of duty: DSD ⊆ R×R

example: (customer, customer consultant) ∈ DSD

constraint: AR−1 ◦AR ⊆ DSD ∪DSD−1

cardinality constraints: e.g. |{u. (u, branch manager) ∈ UA}| ≤ 1

prerequisite permissions: e.g.

((clerk, r) ∈ RH ∧ (r, write) ∈ PA) −→ (r, read) ∈ PA

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 86

RBAC example: complex information system

Privileges:
roles ⊆ user× role
subroles ⊆ role× role
privs ⊆ role× privilege

user role privilege

subroles

roles privs

(u, p) ∈ roles ◦ subroles∗ ◦ privs

Permissions:
groups ⊆ user× group
subgroups ⊆ group× group
gperms ⊆ group× permission
uperms ⊆ user× permission

user group

subgroups

groups
permission

entry

gperms

uperms

(u, p) ∈ (groups ◦ subgroups∗ ◦ gperms(e)) ∪ uperms(e)
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 87

Automata

+ Input/Output Automata (IOAs)

• AutoFocus Automata

• Interacting State Machines (ISMs)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 88

Input/Output Automata (IOAs)

• each reactive system component modeled as an automaton

• state machine with actions

• transitions may be nondeterministic

• input actions cannot be blocked

• other actions under control of automaton

• automata can be composed, forming new automata

• communication via synchronized actions

• strong metatheory: refinement, compositionality, . . .

T a s r n
In Out

State

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 89

IOAs: action signatures

Interface between an automaton and its environment:

action signature S, consisting of disjoint sets

in(S): input actions

out(S): output actions

int(S): internal actions

Derived notions:

acts(S) = in(S) ∪ out(S) ∪ int(S): all actions

ext(S) = in(S) ∪ out(S): external actions

local(S) = out(S) ∪ int(S): locally-controlled actions

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 90

IOAs: automata

An I/O automaton A consists of

sig(A): action signature

states(A): set of states

start(A) ⊆ states(A): initial states (at least one)

steps(A) ⊆ states(A)× acts(A)× states(A): transition relation

input enabled: ∀σ. ∀a ∈ in(A). ∃σ′. (σ, a, σ′) ∈ steps(A)

part(A) ⊆ ℘(local(A)): countable partitioning

(used for expressing fairness, which is not an issue here)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 91

IOAs: coffee machine CM

in(S1) = {PUSH1, PUSH2}: buttons received

out(S1) = {COFFEE, ESPRESSO, DOPPIO}

int(S1) = {LOOSE}

sig(CM) = S1

states(CM) = N: variable ’button-pushed’

start(A) = {0}: initially, no button pushed

steps(A) = {(x, PUSH1, 1), (x, PUSH2, 2), (x, LOOSE, 0),
(1, COFFEE, 0), (2, ESPRESSO, 0), (2, DOPPIO, 0)
| x ∈ states(CM)}

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 92

IOAs: user USER

in(S2) = {COFFEE, ESPRESSO, DOPPIO}

out(S2) = {PUSH1, PUSH2}: buttons pushed

int(S2) = ∅

sig(USER) = S2

states(USER) = B× B: variables ’waiting’, ’doppio’

start(A) = {(F, F)}: not waiting and no doppio received

steps(A) = {((F, T), PUSH1, (T , T)), ((F, F), PUSH2, (T , F)),
((w, d), COFFEE, (F , d)), ((w, d), ESPRESSO, (F , d)),
((w, d), DOPPIO, (F , T)) | w, d ∈ B}

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 93

IOAs: execution

execution fragment of A: a finite sequence σ0, a1, σ1, . . . , an, σn

or an infinite sequence σ0, a1, σ1, . . . of states and actions of A

such that ∀i. (σi, ai+1, σi+1) ∈ step(A)

execs(A): execution fragments beginning with some σ0 ∈ start(A)

finexecs(A) ⊆ execs(A): finite executions of A

reachable(A): the final states σn of all finite executions of A

sched(α): the subsequence of actions in execution fragment α

(fin)scheds(A): schedules of all (finite) executions of A

beh(α): the subsequence of external actions in execution fragment α

(fin)behs(A): behaviors of all (finite) executions of A

Note: traces ((fin)execs, (fin)scheds, and (fin)beh) are prefix-closed.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 94

IOAs: coffee machine executions

execution fragment of CM :

α = [1, COFFEE, 0, PUSH2, 2, LOOSE, 0, PUSH1, 1]

execs(CM) = {[0, PUSH2, 2], [0, PUSH1, α, (PUSH1, 1)∗], . . . }

finexecs(CM) = {[0], [0, PUSH2, 2], [0, PUSH1, α], . . . }

reachable(CM) = {0, 1, 2}

sched(α) = [COFFEE, PUSH2, LOOSE,PUSH1]

(fin)scheds(CM) =

{[], [PUSH2], [LOOSE, PUSH1, COFFEE], . . . }

beh(α) = [COFFEE, PUSH2, PUSH1]

behs(CM) = {[], [PUSH2], [PUSH1, COFFEE], . . . }
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 95

IOAs: composition of signatures

A countable collection {Si}i∈I of action signatures

is strongly compatible iff

• out(Si) ∩ out(Sj) = ∅ for all i 6= j ∈ I

• int(Si) ∩ acts(Sj) = ∅ for all i 6= j ∈ I

• no action is contained in infinitely many acts(Si) for all i ∈ I

The composition Πi∈ISi of a countable collection of strongly

compatible action signatures {Si}i∈I is an action signature S with

in(S) = ∪i∈I in(Si) − ∪i∈I out(Si)
out(S) = ∪i∈I out(Si) − ∅
int(S) = ∪i∈I int(Si)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 96

IOAs: composition of automata

The composition Πi∈IAi of a countable collection of

strongly compatible automata {Ai}i∈I is an automata A with

sig(A) = Πi∈Isig(Ai)
states(A) = Πi∈Istates(Ai)
start(A) = Πi∈Istart(Ai)
steps(A) = {(σ, a, σ′) | if a ∈ acts(Ai) then

(σ[i], a, σ′[i]) ∈ steps(Ai) else σ[i] = σ′[i], i ∈ I}
part(A) = ∪i∈I part(Ai)

A is input-enabled since all Ai are.

... ...

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 97

IOAs: coffee session

Compose CM and USER as CS = CM × USER.

sig(CM) and sig(USER) are strongly compatible because

• out(CM) ∩ out(USER) = ∅
• int(CM) ∩ acts(USER) = ∅ and int(USER) ∩ acts(CM) = ∅
• no action is contained in infinitely many {acts(CM), acts(USER)}

The composition CS = CM × USER has the components

sig(CS) = sig(CM)× sig(USER) having the components

in(sig(CS)) = EA− EA = ∅
out(sig(CS)) = EA where

EA = {PUSH1, PUSH2, COFFEE,ESPRESSO,DOPPIO}
int(sig(CS)) = {LOOSE}

states(CS) = N× B× B
start(CS) = (0, F, F), steps(CS) = . . .

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 98

IOAs: execution and composition

The projection α|Ai of an execution fragment α = σ0, a1, σ1, . . .

of a composition Πi∈IAi is the sequence obtained from α by

• deleting those aj, σj for which aj /∈ acts(Ai)
• replacing all remaining σj by their i-th component σj[i]

Proposition: Let {Ai}i∈I be a countable collection of strongly

compatible automata and A = Πi∈IAi.

If α ∈ execs(A) then α|Ai ∈ execs(Ai) for every i ∈ I.

The same holds for finexecs(A), scheds(A), finscheds(A),
behs(A), and finbehs(A).

Examples: α = [(0, F, F), PUSH2, (2, T , F), DOPPIO,

(0, F , T), PUSH1, (1, T , T), LOOSE, (0, T, T)]

α|CM =[0, PUSH2, 2, DOPPIO, 0, PUSH1, 1, LOOSE, 0]

beh(α)|USER =[PUSH2, DOPPIO, PUSH1]
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 99

IOAs: specification and refinement

A safety specification P is a prefix-closed set of action sequences.

An automaton A implements a specification P iff finbehs(A) ⊆ P.

An automaton A implements an automaton A′ with the same external

signature iff finbehs(A) ⊆ finbehs(A′).

Examples: P1 = sequences of actions from

{PUSH1, PUSH2, COFFEE,ESPRESSO,DOPPIO}
where each COFFEE is immediately preceded by PUSH1.

Does CM implement P1? Yes. Coffee is given only promptly on request.

Does USER implement P1? No. He may receive coffee anytime.

CM is implemented by CM ′ which is like CM but never gives a doppio.

Frustrating to the USER:

behs(CM ′ × USER) = all prefixes of [(PUSH2, ESPRESSO)∗]

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 100

IOAs: compositionality

Let A be an automaton and P be a safety specification with actions

from Φ where Φ ∩ int(A) = ∅. A preserves P iff

∀β. βa|A ∈ finbehs(A) ∧ a ∈ out(A) ∧ β|Φ ∈ P −→ βa|Φ ∈ P.

Example: CM preserves P1 and USER preserves P1.

Theorem 1: Let {Ai}i∈I be a countable collection of strongly

compatible automata and A = Πi∈IAi such that in(A) = ∅.
Let P be a safety specification over ext(A).
If every Ai preserves P, then A implements P.

Example: CS implements P1.

Theorem 2: Let {Ai}i∈I and {Bi}i∈I be countable collections of

strongly compatible automata.

If Ai implements Bi for all i, then Πi∈IAi implements Πi∈IBi.

Example: CM ′ × USER implements CS.
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 101

IOAs: papers

• N. Lynch and M. Tuttle: An introduction to Input/Output Automata.

CWI Quarterly 2(3):219-246, 1989.

• S. Garland and N. Lynch: The IOA Language and Toolset:

Support for Designing, Analyzing, and Building Distributed Systems.

MIT/LCS/TR-762, 1998.

• O. Müller: A Verification Environment for I/O Automata Based on

Formalized Meta-Theory. PhD thesis, TU München, 1998.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 102

Automata

• Input/Output Automata (IOAs)

+ AutoFocus Automata

• Interacting State Machines (ISMs)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 103

AutoFocus Automata

Automata with (nondeterministic) state transitions +

clock-synchronous i/o simultaneously on multiple connections

Automata may be hierarchical

OutT a s r n
In

Data StateControl State

Local State:

Functional language for types and expressions

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 104

Toolset

Graphical browser/editor with version control by

Modelchecking/testing/simulation tools by

Code generators by

• First Prize in competition at Formal Methods 1999

• Homepage: autofocus.in.tum.de

Formal Security Modeling, LMU München, SS 2005

autofocus.in.tum.de

David von Oheimb 105

System Structure Diagrams (SSDs)

defining components with local variables, interfaces, and connections

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 106

State Transition Diagrams (STDs)

defining preconditions, input, output, and effects of transitions

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 107

Extended Event Traces (EETs)

describing the event order for exemplary executions and test cases

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 108

Automata

• Input/Output Automata (IOAs)

• AutoFocus Automata

+ Interacting State Machines (ISMs)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 109

Requirements

Expressiveness: state transitions, concurrency, asynchronous messages

; applicable to a large variety of reactive systems

Ease of modeling: systems describable directly

Simplicity: minimum of expertise and time required

Flexibility: adaptation and extension

Strength of the semantics: refinement, compositionality, . . .

Graphical capabilities: overview and intuition

Tool support: mature and freely available (including sources)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 110

Interacting State Machines (ISMs)

Automata with (nondeterministic) state transitions +

buffered i/o simultaneously on multiple connections

ISM system may depend on global state

Data State

Local State:

Input Buffers:

Out

Control State

In
T a s r n

Global State

Transitions defined in executable and/or axiomatic style
Finite executions only (; no liveness properties)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 111

ISM Framework

AutoFocus:
Syntactic perspective

Graphical documentation

Type and consistency checks

Isabelle/HOL:
Semantic perspective

Textual documentation

Validation and correctness proofs

AutoFocus drawing −→ Quest file
Conv1−→ Isabelle theory file

Within Isabelle: ism sections
Conv2−→ Standard HOL definitions

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 112

Elementary ISMs
MSGs = P →M∗ family of messages M,

indexed by port names P
CONF(Σ) = MSGs×Σ configuration

with local state Σ
TRANS(Σ) = ℘((MSGs×Σ)× (MSGs×Σ)) transitions

ISM(Σ) = ℘(P)×℘(P)×Σ×TRANS(Σ) ISM type

a = (In(a),Out(a), σ0(a), Trans(a)) ISM value

Local State:

Input Buffers:

Out

Control State Data State

In
T a s r n

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 113

Producer-Consumer Example

Two producers sending random integer values to a port named Inlet

of a consumer which sums them up in a local variable named Accu

Producer1

Producer2

Consumer

Inlet:int

Local State:
 int Accu = 0

P = {Inlet}
M = Z

MSGs = {Inlet} → Z
∗

Produceri = (∅, {Inlet}, •, {((¤, •), (¤(Inlet := 〈n〉), •))|n ∈ Z})
Consumer = ({Inlet}, ∅, 0,

{((¤(Inlet := 〈n〉), a), (¤, a + n))|n, a ∈ Z})
where ¤ = λp. 〈〉 and m(X := s) = λp. if p = X then s else m(p)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 114

Composite Runs

Let A = (Ai)i∈I be a family of ISMs. The set of composite runs

CRuns(A) of type ℘((CONF(Πi∈IΣi))∗) is inductively defined as

〈(¤,Πi∈I σ0(Ai))〉 ∈ CRuns(A)

j ∈ I

cs_(i .@. b, S[j :=σ]) ∈ CRuns(A)
((i, σ), (o, σ′)) ∈ Trans(Aj)

cs _ (i .@. b, S[j :=σ]) _ (b .@. o, S[j :=σ′]) ∈ CRuns(A)

where .@. concatenates message families on a port by port basis:

m .@. n = λp. m(p) @ n(p), e.g.

(¤(Inlet := 〈1,−3〉)) .@. (¤(Inlet := 〈6〉)) = ¤(Inlet := 〈1,−3, 6〉)

i2 .@. b2
σ1

b1 .@. o1

i3 .@. b3
σ2

b2 .@. o2?

��
?

��
?

��
���

���
���

��
�
��

... ..

HH
H

%
%%.............................

���
���

���
��
�
��

... ..

HH
H

%
%%.............................i1 .@. b1

σ0 t2 t3t1
¤

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 115

Parallel composition of ISMs

Let A = (Ai)i∈I be a family of ISMs. Their parallel composition

‖i∈IAi is an ISM of type ISM(CONF(Πi∈IΣi)) is defined as

(AllIn(A)\AllOut(A), AllOut(A)\AllIn(A), (¤, S0(A)), PTrans(A))

where

• AllIn(A) =
⋃

i∈I In(Ai)
... ...

• AllOut(A) =
⋃

i∈I Out(Ai)

• S0(A) = Πi∈I σ0(Ai) is the Cartesian product of all initial local states

• PTrans(A) of type TRANS(CONF(Πi∈IΣi)) is the parallel

composition of their transition relations, defined as . . .

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 116

Parallel transition relation

j ∈ I

((i, σ), (o, σ′)) ∈ Trans(Aj)
((i|AllOut(A), (i|AllOut(A) .@. b, S[j :=σ])),
(o|AllIn(A), (b .@. o|AllIn(A), S[j :=σ′]))) ∈ PTrans(A)

where

• S[j :=σ] is the replacement of the j-th component of the tuple S by σ

• m|P denotes the restriction λp. if p ∈ P then m(p) else 〈〉
of the message family m to the set of ports P

• o|AllIn(A) denotes those parts of the output o provided to any outer ISM

• o|AllIn(A) denotes the internal output to peer ISMs or direct feedback,

which is added to the current buffer contents b

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 117

Producer-Consumer Example: Composition & Run

I = {1, 2, 3}, A1 = Producer1, A2 = Producer2, A3 = Consumer

Σ = Πi∈IΣi = Z

A = ‖i∈IAi = (∅, ∅, (¤, 0), PCT) where

PCT = {((¤, (b, a)), (¤, (b .@. ¤(Inlet := 〈n〉), a)))
|n, a ∈ Z ∧ b ∈MSGs}

∪ {((¤, (¤(Inlet := 〈n〉) .@. b, a)), (¤, (b, a + n)))
|n, a ∈ Z ∧ b ∈MSGs}

A possible trace is

〈(¤, 0),
(¤(Inlet := 〈1〉), 0)), (¤(Inlet := 〈1,−3〉), 0)),
(¤(Inlet := 〈−3〉), 1)), (¤,−2),
(¤(Inlet := 〈6〉),−2)), (¤, 4)〉

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 118

ISM definition in Isabelle/HOL

ism name =
ports pn type
inputs I pns
outputs O pns

messages msg type
states [state type]
[control cs type [init cs expr0]]
[data ds type [init ds expr0] [name ds name]]

[transitions
(tr name [attrs]]: [cs expr (-> | →) cs expr’]
[pre (bool expr)+]
[in (I pn I msgs)+]
[out (O pn O msgs)+]
[post ((lvar name := expr)+ | ds expr’)])+]

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 119

Producer-Consumer Example: Isabelle definition

datatype Pn = Inlet

ism Producer =

ports Pn

inputs "{}"

outputs "{Inlet}"

messages int

states
data unit

transitions
produce:

out Inlet "[n]"

record C_data = Accu :: int

ism Consumer =

ports Pn

inputs "{Inlet}"

outputs "{}"

messages int

states
data C_data name "s"

transitions
consume:

in Inlet "[n]"

post Accu := "Accu s + n"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 120

LKW Model of the Infineon SLE66

+ The SLE 66 family

• LKW Model

• Security Properties

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 121

The SLE 66 family

SLE 66: family of smart card chips by Infineon Technologies

• General-purpose microprocessor with RAM, ROM, and EEPROM:

• Encryption unit, random number generator, sensors, . . .

• No MMU, no on-chip operation system functionality

; Secure platform for customized BIOS and single application

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 122

SLE 66 Security Objectives

Applications: electronic passports, electronic payment systems, . . .

Security level: elementary, no assumptions about high-level functionality

Security objectives:
protect information stored in the different memory components:

• The data stored in any of the memory components

shall be protected against unauthorized disclosure or modification.

• The security relevant functions implemented in firmware or hardware

shall be protected against unauthorized disclosure or modification.

• Hardware test routines

shall be protected against unauthorized execution.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 123

SLE 66 Security Mechanisms

Objectives achieved by a set of security enforcing functions:

• System life-cycle divided in several phases.

Entry to the phases controlled by test functions,

checking various preconditions and authorization.

• Data stored in memory encrypted by hardware means.

Several keys and key sources, including chip specific random number

• Sensors and active shields against physical tampering

• Provisions against differential power analysis (DPA)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 124

LKW Model of the Infineon SLE66

• The SLE 66 family

+ LKW Model

• Security Properties

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 125

Lotz-Kessler-Walter (LKW) Model

One of first formal models for security properties of hardware

Extrinsic value: Security certification on level ITSEC E4 / CC EAL5

Intrinsic value: Feedback for development and quality control

Abstract system model based on an ad-hoc automaton formalism

Formalization of security requirements, verification

Total effort: two months

Minor syntactical, typographical and semantical slips

Type errors, missing assumptions, incomplete proofs

⇒ ported to Isabelle/HOL + ISMs

Effort: two weeks

Added later: analysis of nonleakage
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 126

LKW Model: System Architecture

SLE66In:message Out:message

Local Variables:
 map(fn,val) valF
 map(dn,val) valD

In : input port receiving commands

Out : output port emitting results/reaction

valF maps function names to function code, e.g. firmware

valD maps data object names to data values, e.g. personalization data

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 127

LKW Model: State Transitions (abstracted)

P0

P1

P2Error
R0.0

R1.1

R5.2

R0.2

R0.1

R5.2

R1.2

R5.2R0.0

R1.1

R5.2

R0.2

R0.1

R5.1
R0.4

R2.2

R1.3

R1.4

R2.1
R5.3

R3.2

R4.1

R4.2

R4.2R4.2

R3.1

R0.3

R5.1

R5.1

R5.2‘

R5.2‘

R5.2‘

R5.2

R1.2

R5.2

R4.2

Phase 0 : chip construction

Phase 1 : upload of Smartcard Embedded Software and personalization

Phase 2 : deployment (normal usage)

Phase Error : locked mode from which there is no escape
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 128

LKW Model: Isabelle Theory

theory SLE66 = ISM_package:

• Build upon the general ISM theory

• Define various building blocks

• ISM section

• Underspecification often used for abstraction

• ; not all properties derivable from construction, but axioms needed

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 129

LKW Model: Names

typedecl fn — function name
typedecl dn — data object name
datatype on = F fn | D dn — object name

consts
f_SN :: "fn" — the name of the function giving the serial number

consts
FTest0 :: "fn set" — the names of test functions of phase 0
FTest1 :: "fn set" — the names of test functions of phase 1
FTest :: "fn set" — the names of all test functions

defs
FTest_def: "FTest ≡ FTest0 ∪ FTest1"

axioms
FTest01_disjunct: "FTest0 ∩ FTest1 = {}"

f_SN_not_FTest: "f_SN /∈ FTest"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 130

consts
F_Sec :: "fn set" — the names of all security-relevant functions
F_PSec :: "fn set" — the subset of F_Sec relevant for the processor
F_ASec :: "fn set" — the names of _Sec relevant for applications
F_NSec :: "fn set" — the names of all non-security-relevant functions

defs
F_ASec_def: "F_ASec ≡ F_Sec - F_PSec"

F_NSec_def: "F_NSec ≡ -F_Sec"

axioms
F_PSec_is_Sec: "F_PSec ⊆ F_Sec"

FTest_is_PSec: "FTest ⊆ F_PSec"

consts
D_Sec :: "dn set" — the names of all security-relevant data objects
D_PSec :: "dn set" — the subset of D_Sec relevant for the processor
D_ASec :: "dn set" — the names of D_Sec relevant for applications
D_NSec :: "dn set" — the names of all non-security-relevant data objects

defs
D_ASec_def: "D_ASec ≡ D_Sec - D_PSec"

D_NSec_def: "D_NSec ≡ -D_Sec"

consts Sec :: "on set" — the names of all security-relevant objects
defs Sec_def: "Sec ≡ {F fn |fn. fn ∈ F_Sec} ∪ {D dn |dn. dn ∈ D_Sec}"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 131

LKW Model: State (1)

Control state of SLE 66 ISM: phase
datatype ph = P0 | P1 | P2 | Error

typedecl val — data and function values
consts SN :: val — serial number

Date state of SLE 66 ISM: two partial functions
record chip_data =

valF :: "fn ⇀ val"

valD :: "dn ⇀ val"

The overall state:
types SLE66_state = "ph × chip_data"

For simplification, date encryption left implicit

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 132

LKW Model: State (2)
Lookup:
constdefs
val :: "chip_data ⇒ on ⇀ val"

"val s on ≡ case on of F fn ⇒ valF s fn | D dn ⇒ valD s dn"

Available functions:
constdefs
fct :: "chip_data ⇒ fn set"

"fct s ≡ dom (valF s)"

Functions results and their effect on the state:
consts
"output" :: "fn ⇒ chip_data ⇒ val"

"change" :: "fn ⇒ chip_data ⇒ chip_data"

— change is unused for test functions
"positive" :: "val ⇒ bool" — check for positive test outcome

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 133

LKW Model: ISM definition (1)

Two port names:
datatype interface = In | Out

Subjects issuing commands:
typedecl sb

consts Pmf :: sb — processor manufacturer

Commands as input, values as potential output:
datatype message =

Exec sb fn | Load sb fn val | Spy on — input
| Val val | Ok | No — output

consts subject :: "message ⇒ sb"

primrec
"subject (Exec sb fn) = sb"

"subject (Load sb fn v) = sb"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 134

LKW Model: ISM definition (2)

ism SLE66 =

ports interface

inputs "{In}"

outputs "{Out}"

messages message

states
control ph init "P0"

data chip_data name "s" — The data state variable is called s.
— The initial data state is left unspecified.

transitions
...

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 135

LKW Model: Transitions, R0.0

R0.0 thru R0.4: function execution in initial phase 0.

• Only the processor manufacturer is allowed to invoke functions.

• The selected function must be present.

R0.0: if function belongs to FTest0 and the corresponding test succeeds,

phase 1 is entered, and functions FTest0 are disabled.

R00: P0 → P1

pre "f ∈ fct s∩FTest0", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest0)"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 136

LKW Model: R0.1, R0.2

R0.1: shortcut leaving out phase 1.
If the function belongs to FTest1 and the test succeeds,

phase 2 is entered, and all test functions are disabled.

R01: P0 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest)"

R0.2: if test fails, the system enters the error state.

R02: P0 → Error

pre "f ∈ fct s∩FTest0", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 137

LKW Model: R0.3, R0.4

R0.3: successful execution of all other function:

the function yields a value and may change the chip state

R03: P0 → P0

pre "f ∈ fct s - FTest"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

R0.4: in all remaining cases of function execution,

the chip responds with No and its state remains unchanged.

R04: P0 → P0

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 138

LKW Model: R1.1-R1.4: functions in upload phase 1

R11: P1 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest1)"
R12: P1 → Error

pre "f ∈ fct s∩FTest1", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

R13: P1 → P1

pre "f ∈ fct s - FTest1"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

R14: P1 → P1

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 139

LKW Model: R2.1 and R2.2

R2.1 and R2.2: function execution in usage phase 2,

analogously to R0.3 and R0.4.

R21: P2 → P2

pre "f ∈ fct s"

in In "[Exec sb f]"

out Out "[Val (output f s)]"

post "change f s"

R22: P2 → P2

pre "f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 140

LKW Model: R3.1 and R3.2

R3.1 and R3.2: function execution in the error phase:

the only function allowed to be executed is chip identification.

R31: Error → Error

pre "f_SN ∈ fct s"

in In "[Exec sb f_SN]"

out Out "[Val SN]"

R32: Error → Error

pre "f /∈ fct s∩{f_SN}"
in In "[Exec sb f]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 141

LKW Model: R4.1 and R4.2

Effects of uploading new functionality.

• Must be done by the processor manufacturer

• Allowed only in phase 1

• Meanwhile, also security-critical application functions are loadable.

R4.1: the admissible situations
R41: P1 → P1

pre "f ∈ F_NSec ∪ (F_ASec - fct s)"

in In "[Load Pmf f v]"

out Out "[Ok]"

post valF := "valF s(f 7→v)"

R4.2: all other cases
R42: ph → ph

pre "f /∈ F_NSec ∪ (F_ASec - fct s) ∨ sb 6= Pmf ∨ ph 6= P1"

in In "[Load sb f v]"

out Out "[No]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 142

LKW Model: R5.1

R5.1 thru R5.3: the effects of attacks

Special “spy” input models any attempts to tamper with the chip

and to read security-relevant objects via physical probing on side

channels (by mechanical, electrical, optical, and/or chemical means),

e.g. differential power analysis or inspection with microscope

Modeling physical attacks in more detail is not feasible:

would require a model of physical hardware.

R5.1: the innocent case of reading non-security-relevant objects in any

regular phase, which actually reveals the requested information.

R51: ph → ph

pre "on /∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "case val s on of None ⇒ [] | Some v ⇒ [Val v]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 143

LKW Model: R5.2

R5.2: attempt to read security-relevant objects in a regular phase.

The requested object may be revealed or not. If a secret is leaked,

the chip has to detect this and enter the error phase.

“Destructive reading”: attacks may reveal information even about

security-relevant objects, but after the first of any such attacks, the

processor hardware will be “destroyed”, i.e. cannot be used regularly.

R52: ph → Error

pre "on ∈ Sec", "v ∈ {[],[Val (the (val s on))]}", "ph 6= Error"

in In "[Spy on]"

out Out "v"

post "any"

R52’:ph → ph

pre "on ∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "[]"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 144

LKW Model: R5.3
R5.3: in the error phase no (further) information is revealed.

R53: Error → Error

in In "[Spy on]"

out Out "[]"

post "any"

R5.2 and R5.3 ⇒ the attacker may obtain (the representation of)

at most one security-relevant object from the chip memory.

Such singleton leakage is harmless!

All data stored on the chip is encrypted. The value obtained may be

the encryption key itself: no further data item, in particular none

encrypted with the key, can be obtained.

encrypted value: attacker cannot any more extract the respective key.

Both cases not helpful to the attacker.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 145

LKW Model: Rule features

R52: ph → Error

pre "ph 6= Error", "oname ∈ Sec",

"v ∈ {[], [Val (the (val σ oname))]}"

in In "[Spy oname]"

out Out "v"

post "any"

Typical:

Both input and output

Underspecification

Nondeterminism (2 ×)

Generic transitions

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 146

LKW Model: ISM Runs

types
SLE66_trans = "(unit, interface, message, SLE66_state) trans"

constdefs
Trans :: "SLE66_trans set" — all possible transitions
"Trans ≡ trans SLE66.ism"

TRuns :: "(SLE66_trans list) set" — all possible transition sequences
"TRuns ≡ truns SLE66.ism"

Runs :: "(SLE66_state list) set" — all possible state sequences
"Runs ≡ runs SLE66.ism"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 147

LKW Model of the Infineon SLE66

• The SLE 66 family

• LKW Model

+ Security Properties

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 148

LKW Model: Security Objectives

In (confidential) original security requirements specification by Infineon:

SO1. “The hardware must be protected against

espionage of the security functionality.”

SO2. “The hardware must be protected against

unauthorised modification of the security functionality.”

SO3. “The information stored in all memory devices

must be protected against unauthorised access.”

SO4. “The information stored in all memory devices

must be protected against unauthorised modification.”

SO5. “It must not be possible to execute the test routines of the STS

test mode without authorisation.”

Later, additional requirements were added:

SO[1+2]’. confidentiality+integrity of Smartcard Embedded Software.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 149

LKW Model: Formalized Security Objective FSO1

FSO1: in any sequence ts of transitions performed by the chip,
if the chip outputs a value v representing the code of
any security-relevant function during its hitherto life ts,
then the next state is in the error phase, or the output was
due to a function call by the processor manufacturer.
theorem FSO1: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p’ Out = [Val v]; v ∈ ValF_Sec (truns2runs ts)]] =⇒
ph’ = Error ∨ (∃ fn. p In = [Exec Pmf fn])"

The set ValF_Sec r holds the code of all security-relevant functions
present anywhere in a run r :
constdefs
ValF_Sec :: "SLE66_state list ⇒ val set"

"ValF_Sec r ≡
⋃
{ran (valF sbF_Sec) | ph s. (ph,s) ∈ set r}"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 150

LKW Model: Proof of FSO1 (1)

Proof of FSO1 by

• unfolding some definitions, e.g. of the SLE 66 ISM

• applying properties of auxiliary concepts like truns2runs

• a case split on all possible transitions

Isabelle solves most of the cases automatically (with straightforward

term rewriting and purely predicate-logical reasoning), except two:

R2.1 (normal function execution) is handled using Axiom3:
In phase 2, a function cannot reveal (by “guessing” or by accident)
any members of ValF_Sec r

Axiom3: " [[r∈Runs; (P2,s)∈set r; f∈fct s]]=⇒ output f s /∈ValF_Sec r"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 151

LKW Model: Proof of FSO1 (2)

R5.1 (harmless Spy attack) relies on the lemma

" [[r ∈ Runs; (ph, s) ∈ set r; n /∈ Sec; val s n = Some v]] =⇒ v /∈ ValF_Sec r"

which in turn relies on Axiom4:
If a function can be referenced in two (different) ways and one of
them declares it to be security-relevant, the other does the same.
Axiom4: " [[r ∈ Runs;

(ph, s) ∈ set r; (ph’, s’) ∈ set r;

val s n = Some v; val s’ n’ = Some v;

n ∈ Sec]] =⇒ n’ ∈ Sec"

When machine-checking the orginal pen-and-paper proofs,

we noticed that Axiom4 was missing!

Such experience demonstrates importance of machine support

when conducting formal analysis.
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 152

LKW Model: FSO21

Translation of SO2 splits into two parts: overwriting and deletion.

FSO21’: for any transition not ending in the error phase,
if a security-relevant function g is present in both the pre-state
and the post-state, the code associated with it stays the same:
theorem FSO21’: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

g ∈ fct s∩fct s’∩F_Sec]] =⇒ valF s’ g = valF s g"

This is a generalization of the original FSO21, to reflect

the extensions made to the Load operation in rule R41:

We do not compare the initial and current values of g

but the previous and current values of g

; takes into account also functions added in the meantime

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 153

LKW Model: Proof of FSO21

Proof of FSO21 by case distinction over all possible transitions.

Most cases are trivial except where function execution may change

the stored objects (as described by R03, R13, and R21).
There, invariance of security-relevant functions g is needed,

which follows easily from Axiom1 and Axiom2:

Security-relevant functions do not modify security-relevant functions:
Axiom1: "f∈fct s∩F_Sec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"

In comparison to the version of this axiom in the original model,

the scope of functions f has been extended from “initially available”

to “security-relevant”, reflecting the changes to rule R41.

Also non-security-relevant functions do not modify s.-r. functions:
Axiom2: "f∈fct s∩F_NSec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 154

LKW Model: FSO22

FSO22: similarly to FSO21’,
for any transition within the same phase that is not the error phase,
the set of existing security-relevant functions is non-decreasing:

theorem FSO22: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

ph = ph’]] =⇒ fct s∩F_Sec ⊆ fct s’∩F_Sec"

Proof: analougous of FSO21’.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 155

LKW Model: FSO3

FSO3: when trying to get hold of a security-relevant data object on,
if the attacker obtains a security-relevant value,
then the chip enters the error phase:

theorem FSO3 :" [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; p In = [Spy on];

on ∈ Sec; p’ Out 6= []]] =⇒ ph’ = Error"

Proof: by case distinction.

FSO13: once the chip is in the error phase, it stays there
and the only possible output is the serial number:

theorem FSO13: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph = Error;

p’ Out = [Val v]]] =⇒ v = SN ∧ ph’ = Error"

Proof: by case distinction.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 156

LKW Model: FSO4

FSO4: for any transition not ending in the error phase,
if it changes the state,
this is done in a well-behaved way: s’ is derived from s . . .

• via the desired effect of executing an existing function, or
• there is a phase change where only test functions are affected, or
• only a single function f is affected by a Load operation:

theorem FSO4:

" [[((p,(ph,s)),c,(p’,(ph’,s’))) ∈ Trans; ph’ 6= Error]] =⇒
s’ = s ∨
(∃ sb f . p In = [Exec sb f] ∧ f ∈ fct s ∧ s’ = change f s) ∨
(ph’ 6=ph ∧ valD s’ = valD s ∧ valF s’b(-FTest) = valF

sb(-FTest))∨
(∃ sb f v. p In = [Load sb f v] ∧

valD s’ = valD s ∧ valF s’b(-{f}) = valF sb(-{f}))"

Proof: by case distinction.
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 157

LKW Model: FSO5

FSO5: in any sequence of transitions performed by the chip,
any attempt to execute a test function not issued
by the processor manufacturer is refused :

theorem FSO5: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p In = [Exec sb f]; f ∈ FTest]] =⇒
sb = Pmf ∨ s’ = s ∧ p’ Out = [No]"

A second omission of the LKW model was:

In the proof of the security objective FSO5, an argumentation

about the accessibility of certain functions was not given.

We fix this by introducing an auxiliary property

and proving it to be an invariant of the ISM.

As usual, finding the appropriate invariant was the main challenge.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 158

LKW Model: Proof of FSO5 with invariant

The invariant states that

• in phase 1, the test functions from FTest0 have been disabled
• in phase 2, all test functions have been disabled
constdefs
no_FTest_invariant :: "SLE66_state ⇒ bool"

"no_FTest_invariant ≡ λ(ph,s). ∀ f ∈ fct s.

(ph = P1 −→ f /∈ FTest0) ∧ (ph = P2 −→ f /∈ FTest)"

When proving the invariant, 14 of the 19 cases are trivial.

The remaining ones require simple properties of the set FTest,

and two of them require additionally Axiom1 and Axiom2.

The invariant implies
lemma P2_no_FTest:

" [[(P2,s) ∈ reach SLE66.ism; f ∈ fct s]] =⇒ f /∈ FTest"

Exploiting the lemma for the case of rule R21, we can prove FSO5.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 159

LKW Model: Conclusion

Abstract specification: ISM + a few axioms, e.g.

Axiom1: "f∈fct s∩F_Sec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"

Security objectives: predicates on the system behavior, e.g.

theorem FSO5: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p In = [Exec sb f]; f ∈ FTest]] =⇒
sb = Pmf ∨ s’ = s ∧ p’ Out = [No]"

Experience:

• Detected omissions: one axiom, one invariant

• Isabelle proofs: just a few steps, 50% automatic

• New requirements cause only slight changes

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 160

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 161

Outline

• Denning model

• Noninterference

� Classical notion, unwinding

� Access control interpretation

� Nondeterminism

• Nonleakage and Noninfluence

� Motivation, notion, variants

� Noninfluence

� SLE 66 case study

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 162

Explicit and Implicit Information Flow

• Access control models do not consider covert channels:

information transfer via e.g. timing behavior, or existence of files

� An action causes an information flow from an object x

to an object y, if we may learn more about x by observing y.

� If we already knew x, then no information can flow from x.

• We distinguish:

� Explicit information flow: observing y after the assignment y:=x
tells one the value of x.

� Implicit information flow: for conditional if x=0 then y:=1,
observing y after the statement may tell one something about x

even if the assignment y:=1 has not been executed.

• Information flow models cover implicit information flow

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 163

The Denning Model (1)

• A formal definition can be given in terms of information theory.

For instance, information flow from x to y is defined by the decrease

in the equivocation (conditional entropy) of x given the value of y.

• The Denning model considers systems with transitions of the form

if P (z1, . . . , zn) then y := f(x1, . . . , xm). Its components are

� A lattice (L,≤) of security labels.

� A set of labeled objects.

� The security policy: a flow is illegal when it violates

Rule: information flow from an object x with label l(x)
to an object y with label l(y) is permitted only if l(x) ≤ l(y).

• A system is called secure if there is no illegal information flow.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 164

The Denning Model (2)

• We can distinguish:

� Static enforcement of information flow policies:

a program is checked at compile-time using a type system

→ Language-based security by Sabelfeld, Myers et al.

� Dynamic enforcement using run-time flow control mechanism:

transitions can be secured by adding an extra precondition:

if P (z1, . . . , zn) ∧ sup({l(x1), . . . , l(xm), l(z1), . . . , l(zn)}) ≤ l(y)
then y := f(x1, . . . , xm)

• The Denning information flow model covers indirect information flow,

but

Theorem: checking whether a given system is secure in the

Denning information flow model is an undecidable problem.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 165

Outline

• Denning model

+ Noninterference

� Classical notion, unwinding

� Access control interpretation

� Nondeterminism

• Nonleakage and Noninfluence

� Motivation, notion, variants

� Noninfluence

� SLE 66 case study

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 166

Noninterference

• information is classified using domains (security ’levels’)

• users, variables, files, actions, processes, etc. are assigned to domains

• policy: relation (e.g. partial order) on domains, called interference ;

• its complement is called noninterference relation 6;

• if d 6; d′, then ’actions’ of d must not influence d′,

where ’action’ often means: variation of contents

• confidentiality: observations about d impossible for d′

• integrity: changes to d′ impossible for d

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 167

Motivation

Task: Security analysis for Infineon SLE66 smart card processor

SLE66In:message Out:message

Local Variables:
 map(fn,val) valF
 map(dn,val) valD

Main concern: confidentiality of on-chip secrets

Initial solution: representation of secret values is not output

Problem: leakage of re-encoded and partial information

Maximal solution: observable output independent of secrets

Approach: some sort of noninterference

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 168

Generic Notions

System model: — Moore automaton

step : action × state → state

run : action∗ × state → state

— also nondeterministic variants

Security model:

domain — secrecy level/area

obs : domain × state → output

dom : action → domain — input domain

Policy or interference relation

; : ℘(domain × domain)
— always reflexive, possibly intransitive

Noninterference relation: 6;

downgr.

public

secret

confidential

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 169

Noninterference [GM82/84,Rus92]

Aim: secrecy of the presence/absence of actions

noninterference ≡
∀α u. obs(u, run(α, s0)) = obs(u, run(ipurge(u, α), s0))

ipurge(u, α) =”remove from the sequence α all actions that may not

influence u, directly or via the domains of subsequent actions within α”

Observational equivalence/relation

· / · ·l · / · : domain → ℘(state × action∗ × state × action∗)
s / α

u
l t / β ≡ obs(u, run(α, s)) = obs(u, run(β, t))

noninterference ≡ ∀α u. s0 / α
u
l s0 / ipurge(u, α)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 170

ipurge & sources

ipurge : domain × action∗ → action∗

ipurge(u, []) = []
ipurge(u, a _ α) = if dom(a) ∈ sources(a _ α, u)

then a _ ipurge(u, α) else ipurge(u, α)

sources(α, u) = “all domains of actions in α that may influence u,

directly or via the domains of subsequent actions within α”

e.g., v ∈ sources(a1 _ a2 _ a3 _ a4, u)
if v = dom(a2) ; dom(a4) ; u (even if v 6; u)

sources : action∗ × domain → ℘(domain)
sources([], u) = {u}
sources(a _ α, u) = sources(α, u) ∪

{w. ∃v. dom(a) = w ∧ w ; v ∧ v ∈ sources(α, u)}

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 171

Unwinding

Problem: noninterference is global property, to be shown for any α

Idea: induction on α shows preservation of

unwinding relation ∼ between states,

parameterized by domain: domain → ℘(state × state)

— some kind of equality on the sub-state belonging to the domain

— no need to be reflexive, symmetric, nor transitive [Man00/03]

— lifting to sets of domains: s
U
≈ t ≡ ∀u ∈ U. s

u∼ t

Local properties: essentially s
u∼ t −→ step(a, s) u∼ step(a, t)

(step consistency, step respect, local respect)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 172

Proof Sketch

Theorem Goal: obs(u, run(α, s0)) = obs(u, run(ipurge(u, α), s0))

Main Lemma:

∀s t. s
sources(α,u)
≈ t −→ run(α, s) u∼ run(ipurge(u, α), t)

Proof of Theorem: specialize by s = t = s0, use s0

sources(α,u)
≈ s0,

and apply output consistency ∀u s t. s
u∼ t −→ obs(u, s) = obs(u, t)

Proof of Main Lemma: by induction α′ → a _ α′

s
sources(a _ α′,u)

≈ t implies

if dom(a) ∈ sources(a _ α′, u)

(step consistency + respect): then step(a, s)
sources(α′,u)

≈ step(a, t)

(local respect): else step(a, s)
sources(α′,u)

≈ t, then

ind. hypothesis implies run(α′, step(a, s)) u∼ run(ipurge(u, a _ α′), t)
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 173

Step Consistency and Step Respect

weakly step consistent ≡
∀a u s t. dom(a) ; u ∧ s

dom(a)∼ t ∧ s
u∼ t −→ step(a, s) u∼ step(a, t)

~

t step(a,t)

s step(a,s)

~ ~

dom(a)

dom(a)
y=2

y=2

uu

u u
x=6−2

z=3

z=5

y:=... z:=...x:=x−y

x=6

x=6

x=6−2

step respect ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ step(a, s) u∼ step(a, t)

local respect left ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ step(a, s) u∼ t

local respect right ≡ ∀a u s t. dom(a) 6; u ∧ s
u∼ t −→ s

u∼ step(a, t)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 174

Outline

• Denning model

• Noninterference

� Classical notion, unwinding

+ Access control interpretation
� Nondeterminism

• Nonleakage and Noninfluence

� Motivation, notion, variants

� Noninfluence

� SLE 66 case study

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 175

Access Control Interpretation

More concrete system model with explicit read/write to variables

• State contents maps names to values

contents : state × name → value

• Names of objects a domain is allowed to read or write:

observe : domain → ℘(name)
alter : domain → ℘(name)

• The canonical unwinding relation induced by contents and observe:

s
u∼ t ≡ ∀n ∈ observe(u). contents(s, n) = contents(t, n)

This happens to be an equivalence.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 176

Reference Monitor Assumptions (1)

More concrete conditions implying step consistency and local respect

• RMA1 ≡ output consistent, fulfilled immediately if

the output function yields all values observable for the given domain:

output(u, s) ≡ {(n, contents(s, n)) | n ∈ observe u}

• If action a changes the contents of variable n observable by domain u

and if dom(a) may influence u,

the new value depends only on values observable by dom(a) and u:

RMA2 ≡ ∀a u s t n. s
dom(a)∼ t ∧ dom(a) ; u ∧ s

u∼ t ∧
n ∈ observe u ∧ (contents(step(a, s), n) 6= contents(s, n) ∨

contents(step(a, t), n) 6= contents(t, n)) −→
contents(step(a, s), n) = contents(step(a, t), n)

Note that RMA2 is equivalent to weakly step consistent
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 177

Reference Monitor Assumptions (2)

• Any changes must be granted by alter:

RMA3 ≡ ∀a s n.

contents(step(a, s), n) 6= contents(s, n) −→ n ∈ alter(dom(a))

In conjunction with the condition

AC policy consistent ≡ ∀u v. alter(u)∩ observe(v) 6= ∅ −→ u ; v,

this implies local respect:

RMA3 ∧ AC policy consistent −→ local respect

• Hence, enforcement of access control implies security:

theorem access control secure :
RMA1 ∧ RMA2 ∧ RMA3 ∧ AC policy consistent −→
noninterference

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 178

Nondeterminism

Step : action → ℘(state × state) new: non-unique outcome,

Run : action∗ → ℘(state × state) partiality/reachability

Noninterference ≡ ∀α u β. ipurge(u, α) = ipurge(u, β) −→
∀s. (s0, s) ∈ Run(α) −→ ∃t. (s0, t) ∈ Run(β) ∧ obs(u, s) = obs(u, t)

Complications for weak step consistency ⇒
stronger notions preserving simultaneous unwinding relation ≈:

uniform step consistency, step respect, and (right-hand) local respect

Requires in general more proof effort, yet not for two important cases:

• functional Step(a)

• two-level domain hierarchy {H,L}

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 179

Outline

• Denning model

• Noninterference

� Classical notion, unwinding

� Access control interpretation

� Nondeterminism

+ Nonleakage and Noninfluence

� Motivation, notion, variants

� Noninfluence

� SLE 66 case study

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 180

Nonleakage and Noninfluence

Event-based systems:

• visibility of actions/events is primary,

• secret state is secondary (via side-effects)

⇒ Noninterference

State-oriented systems:

• secret state is primary,

• actions/events are secondary or irrelevant

⇒ Nonleakage

State-event-systems:

• visibility of actions/events is relevant

• also secrecy in state is essential

⇒ Noninfluence

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 181

Concept

Language-based security: no assignments of high-values

to low-variables, enforced by type system

Semantically: take (x, y) as elements of the state space

with high-level data (on left) and low-level data (on right).

Step function S(x, y) = (SH(x, y), SL(x, y))
does not leak information from high to low

if SL(x1, y) = SL(x2, y) (functional independence).

Observational equivalence (x, y)L∼(x′, y′) :←→ y = y′ allows

re-formulation:

s
L∼ t −→ S(s) L∼ S(t) (preservation of

L∼)

step consistency + respect

Generalization to action sequences α and arbitrary policies ;
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 182

Definition

nonleakage ≡ ∀α s u t. s
sources(α,u)
≈ t −→ s / α

u
l t / α

“the outcome of u’s observation is independent of those domains

from which no (direct or indirect) information flow is allowed.”

• like Main Lemma, but no purging (visibility of actions irrelevant)

• unwinding relation ∼ is part of the notion:

the secrets for u are those state components not constrained by ∼

• corresponding unwinding theorem: nonleakage implied by

weakly step consistent ∧ step respect ∧ output consistent

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 183

Variants

If (domains of) actions are irrelevant:

weak nonleakage ≡ ∀α s u t. s
chain(α,u)
≈ t −→ s / α

u
l t / α

where chain : action∗ × domain → ℘(domain)
e.g., v ∈ chain(a1_a2_a3_a4, u) if ∃v′. v ; v′ ; u

• implied by output consistent ∧ weak step consistent respect

Weak combination of step consistency and step respect:

∀s u t. s
{w. w ; u}
≈ t −→ ∀a. step(a, s) u∼ step(a, t)

If additionally the policy is transitive:

trans weak nonleakage ≡ ∀s u t. s
{w. w ; u}
≈ t −→ ∀α. s / α

u
l t / α

• implied by weak step consistent respect ∧ output consistent

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 184

Noninfluence

combining noninterference and nonleakage:

noninfluence ≡ ∀α s u t. s
sources(α,u)
≈ t −→s / α

u
l t / ipurge(α, u)

• useful if both . . .

� certain actions should be kept secret and

� initially present secret data should not leak

• stronger than noninterference

• implied by

weakly step consistent ∧ local respect ∧ output consistent

• appeared already as Main Lemma (Rushby’s Lemma 5)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 185

Outline

• Denning model

• Noninterference

� Classical notion, unwinding

� Access control interpretation

� Nondeterminism

• Nonleakage and Noninfluence

� Motivation, notion, variants

� Noninfluence

+ SLE 66 case study

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 186

Infineon SLE66 Case Study: Unwinding

Security objective: secret functionality and data is not leaked

Applied notion: nondeterministic transitive weak Nonleakage

Unwinding: equality on: inputs, outputs, non-secret functions and data,

phase, function availability

unwind :: "SLE66_state ⇒ on set ⇒ SLE66_state ⇒ bool"

unwind_def2: "(ph, s) ~A~ (ph’,t) = (ph = ph’ ∧ fct s = fct t ∧
(∀ f∈fct s. output f s = output f t) ∧
(∀ fn. F fn ∈ A −→ valF s fn = valF t fn) ∧
(∀ dn. D dn ∈ A −→ valD s dn = valD t dn))"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 187

Infineon SLE66 Case Study: Theorem

Main proof: weak uni Step consistent respect for U = {-Sec}

Minor complication: invariants required (⇒ reachable states)

theorem noleak_Sec: "
∧
s t. [[s ∈ reach ism; t ∈ reach ism;

((p,s),c,(p’,s’)) ∈ transs ; s ~-Sec~ t]] =⇒ ∃ t’.
((p,t),c,(p’,t’)) ∈ transs ∧ s’ ~-Sec~ t’"

Results:

• underspecified functions require nonleakage assumptions

• anticipated (non-critical) single data leakage confirmed

• availability of secret functions is leaked

; security objectives clarified: availability is public

• no other information leaked
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 188

Conclusion

• refinements and generalizations on Rushby’s work

• introduction of new notions for data flow security:

noninterference + nonleakage = noninfluence

• insights on unwinding and observation relations

• application in machine-assisted security analysis:

� smart card processors (secrecy)

� operating systems (process separation)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 189

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 190

Motivation then and now

Three can keep a secret, if two of them are dead.

— Benjamin Franklin

We interact and transact by directing flocks of digital packets towards each other
through cyberspace, carrying love notes, digital cash, and secret corporate
documents.
Our personal and economic lives rely on our ability to let such ethereal carrier
pigeons mediate at a distance what we used to do with face-to-face meetings,
paper documents, and a firm handshake.
How do we converse privately when every syllable is bounced off a satellite and
smeared over an entire continent?
How should a bank know that it really is Bill Gates requesting from his laptop in
Fiji a transfer of $10,000,000,000 to another bank?

Fortunately, the mathematics of cryptography can help.

— Ron Rivest

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 191

Outline

+ Cryptographic Ingredients

• Crypto Protocols

• Paulson’s Inductive Method

• Model Checking with the AVISPA Tool

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 192

What’s it all about?

• How do we turn untrustworthy channels into trustworthy ones?

Confidentiality: Transmited information remains secret.

Integrity: Information not corrupted (or alterations detected).

Authentication: Principals know who they are speaking to.

• Other goals desirable. E.g., anonymity or timeliness (freshness).

• Cryptography is the enabling technology.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 193

Information hiding

SECRET
WRITING

CRYPTOGRAPHY

STEGANOGRAPHY
(hidden)

(scrambled)

SUBSTITUTION

TRANSPOSITION

CODE
(replace words)

CIPHER
(replace letters)

• Cryptology: the study of secret writing.

• Steganography: the science of hiding messages in other messages.

• Cryptography: the science of secret writing.

N.B. Terms like encrypt, encode, and encipher

are often (loosely and wrongly) used interchangeably

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 194

General cryptographic schema

Encryption DecryptionPlaintext
Ciphertext

Key1 Key2

Plain Text
P C P

where Ekey1(P) = C, Dkey2(C) = P

• Security depends on secrecy of the key, not the algorithm.

• Encryption and decryption should be easy, if keys are known.

• Symmetric algorithms

� Key1 = Key2, or are easily derived from each other.

• Asymmetric or public key algorithms

� Different keys, which cannot be derived from each other.

� Public key can be published without compromising private key.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 195

Communications using symmetric cryptography

1. Alice and Bob agree on a cryptosystem. (Can be performed in public.)

2. Alice and Bob agree on key.

3. Alice encrypts plaintext message using encryption algorithm and key.

4. Alice sends ciphertext to Bob.

5. Bob decrypts ciphertext using the same algorithm and key.

• Good cryptosystem: all security is inherent in knowledge of key

and none is inherent in knowledge of algorithm.

• Benefits: offers confidentiality, integrity, and authentication.

• Main problems:
� Keys must be distributed in secret.

� A network of n users requires n× (n− 1)
2

keys.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 196

The Diffie-Hellman Key-Exchange

• Initiator I and responder R exchange “half-keys” to arrive at mutual

session key k.

Compute X = g mod px

Compute Y = g mod py

Compute k = Y mod px Compute k = X mod py

Choose g, p
Generate x

I R

Generate y

(1) X [,g,p]

(2) Y

• I and R agree on g > 1 (generator) and a large prime p. May be public.

• Generated keys are equal:

kI = Y x mod p = (gy)x mod p = (gx)y mod p = Xy mod p = kR

• Security (i.e. secrecy of the generated keys) depends on the difficulty

of computing the discrete logarithm of an exponentiated number

modulo a large prime number.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 197

Diffie-Hellman (cont.)

• Unknown if breaking DH as hard as computing discrete logarithms.

• Strength: creates a shared secret out of nothing!

• Strength: if the result is used as short-term session key,

provides perfect forward secrecy!

Even if an attacker acquires all long-term keys and knows all past

(and future) messages encrpyted with the short-term key, he

cannot recover the messge contents.

• Weakness: Keys are unauthenticated!

• Solution: sign the exponents. But this requires public/shared keys!

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 198

Communications using public-key cryptography

Bob: public key KB and private key K−1
B .

{{P}KB
}K−1

B
= P = {{P}K−1

B
}KB

Obtain confidentiality of P by

1. Alice and Bob agree on a public-key cryptosystem.

(Can be fixed for a network.)

2. Bob sends Alice his public key KB.

(Or: looked up from a database, attached to message, ...)

3. Alice encrypts message using Bob’s public key KB and sends it to Bob.

4. Bob decrypts message with his private key K−1
B .

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 199

Communications using public-key cryptography (cont.)

• Good cryptosystem: all security is inherent in knowledge of key and

none is inherent in knowledge of algorithm.

• It is computationally hard to deduce the private key K−1
B from the

public key KB and hence decrypt (private key is sort of trap-door

one-way function).

• Anyone can encrypt a message with KB, which can then be decrypted

only by owner of K−1
B .

• Public-key algorithms are less efficient than symmetric ones.

• Eases key-management problem: only two keys per agent.

• Can be used to securely distribute session keys, which are then used

with symmetric algorithms for further traffic (⇒ hybrid cryptosystem).

• Owner of private key K−1
B can encrypt messages with it (= digital

signature), which can then be read by everybody using KB.
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 200

The data origin problem

Alice

Tonight at
my place,

Ann
my place,
Tonight at

• Problem of proof of data origin.

• How do we know, or even prove to others,

that a message originated from a particular person?

• Use a token (a “signature”) that can be applied only by

the right sender and but can be checked by any receiver.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 201

Digital signature implementation

• Public-key algorithms like RSA provide a realization of digital

signatures: {{P}KA
}K−1

A
= P = {{P}K−1

A
}KA

with private K−1
A

• Forgery prevented by signing messages with fixed structure, e.g.,

� Message names its sender

1. Alice encrypts message using her private key K−1
A and sends it.

2. Bob decrypts message with Alice’s public key KA.

� More efficient: cryptographic hash signed and sent with the message.

• Message can additionally be encrypted for confidentiality.

• Public key cryptography supports both

� checking the origin and authenticity (also possible with shared key)

� proving to others (non-repudiation)

Is this possible using a shared key? No, receiver could forge signature
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 202

Hash Functions

• Hash functions serve as a secure modification detection code (MDC).

• A hash function is a one-way function of all of the bits in a message so

that any change in the bits results in a change in the hash code.

• Properties that a hash function H should satisfy are:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any input x.

4. For any given h, it is computationally infeasible to find x such that

h = H(x) (one-way property).

5. For any given x it is computationally infeasible to find y 6= x such that

H(y) = H(x) (weak collision resistance, 2nd-preimage resistance).

6. It is computationally infeasible to find a pair (x, y) such that

H(y) = H(x) (strong collision resistance).

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 203

Applications of Hash Functions

1. Message integrity: modification detection code (MDC)

provides checkable fingerprint.

computes
MDC = h(M’)MDC = h(M)

M M’

MDC

(Authenticated)

verifies if

Requires 2nd-preimage resistance and authenticated MDC.

Typical implementation: message authentication code (MAC)

using signed hashes. Additionally gives non-repudiation property.

2. Protect stored passwords:

• Instead of password x the value h(x) is stored in the password file.

• When a user logs in giving a password x′, the system applies the

hash function h and compares h(x′) with the expected value h(x).
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 204

Outline

• Cryptographic Ingredients

+ Crypto Protocols

• Paulson’s Inductive Method

• Model Checking with the AVISPA Tool

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 205

Motivation — bottom up

• How can cryptographic primitives be combined so that the result has

properties that the individual building blocks lack?

• Examples:

� Public keys may be distributed in the clear, but this requires

message authentication.

� Diffie-Hellman creates shared keys “out of nothing”, but also

requires message authentication.

� Digital signatures guarantee message authentication, but not the

timeliness of the message.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 206

Motivation — top down

Example: Securing an e-banking application.

A→ B: “Send $10.000 to account XY Z”
B → A: “I’ll transfer it now”

How does B know the message originated from A?

How does B know A just said it?

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 207

Needham-Schroeder Public Key protocol (simplified)

Notation:
A,B agent names (Alice, Bob)

Na nonce (“number used only once”) chosen by Alice

Ka Alice’s public key

{X}Ka message X encrypted using Ka

anybody can encryt, but only Alice can recover X

Protocol:

1. A→ B : {Na.A}Kb

2. B → A : {Na.Nb}Ka

3. A→ B : {Nb}Kb

Goals:
Alice freshly authenticates Bob, and vice versa

(while the nonces are kept secret)
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 208

Why Are Security Protocols Often Wrong?

Simple algorithms built from simple primitives, but complicated by

• vague specifications

• obscure concepts

• concurrency

• a hostile environment

Theses:

• A protocol without clear goals (and assumptions) is useless.

• A protocol without a proof of correctness is probably wrong.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 209

Dolev-Yao Intruder Model

Intruder has full control over the network — he is the network:

• all messages sent by principals go to the intruder

• operations the intruder can do on messages:

� forward, replay, suppress

� decompose and analyze (if keys known)

� modify, synthesize

� send anywhere

• intruder cannot break cryptography

• intruder may play role(s) of (normal) principals

• intruder gains knowlege of compromised principals

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 210

Outline

• Cryptographic Ingredients

• Crypto Protocols

+ Paulson’s Inductive Method

• Model Checking with the AVISPA Tool

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 211

Paulson’s Inductive Method

Events: Says A B X: A sends B message X A→ B : X

Notes A X : A stores/remembers X

Event trace: sequences of events

A→ B : M1

C → D : P1

B → A : M2

D → C : P2
...

Trace-based interleaving semantics: protocol denotes a trace set.

Interleavings of (partial) protocol runs and attacker messages.

Dolev-Yao model: the attacker controls the network.
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 212

Foundations for a formal model

• Inductive definitions are common in mathematics/informatics.

• Example: the set of binary trees T is the smallest set such that:

1. nil ∈ T
2. If t1 ∈ T and t2 ∈ T , then node(t1, t2) ∈ T .

• Inductive definitions can be fully formalized in logic.

� As set of Horn Clauses (as above) or

as least fixedpoint of a monotone function over some universe.

� Formalization possible in set-theory or higher-order logic.

� Reasoning principle: (structural) induction over trees, rule induction.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 213

Modeling: protocol as an inductively defined set

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

Set P formalizes protocol steps.

0. 〈〉 ∈ P

1. t, A→ B : {A.NA}KB
∈ P if t ∈ P and fresht(NA)

2. t, B → A : {NA.NB}KA
∈ P if t ∈ P , fresht(NB), and A′ → B : {A.NA}KB

∈ t

3. t, A→ B : {NB}KB
∈ P if t ∈ P , A→ B : {A.NA}KB

∈ t
and B′ → A : {NA.NB}KA

∈ t

4. t, Spy → B : X ∈ P if t ∈ P and X ∈ synthesize(analyze(knows(Spy , t)))

Rules 0–3 formalize the protocol steps and rule 4 the attacker model.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 214

Agents and Messages

• agent A,B, . . . = Server | Friend i | Spy

• message X,Y, . . .

= Agent A Agent name

| Number N Guessable number, timestamp, ...

| Nonce N Unguessable number

| Key K Crypto key (unguessable)

| Hash X Hashing

| X.Y Compound message

| {X}K Encryption, public- or shared-key

• messages form free algebra (with injective constructors) ;
messages have unique structure ; no type-flaw attacks

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 215

Defining Protocols

• traces : ℘(message∗)

• defined inductively:
[] ∈ traces

evs ∈ traces X ∈ synth (analz (knows Spy evs))
Says Spy B X _ evs ∈ traces

for every transition of agent A sending message Y (containing a fresh

nonce N) to B, if condition P holds and A has received X and noted Z:

evs ∈ traces P Says C A X ∈ set(evs)
Nonce N /∈ used evs Notes A Z ∈ set(evs)

Says A B (Y (N)) _ evs ∈ traces

• Suppression/loss of messages implicit

• Agents can be engaged in multiple protocol runs
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 216

Freshness
• parts ℘(message)→ ℘(message):
• components potentially recoverable from a set of messages

• defined inductively:

X ∈ H

X ∈ parts H

X.Y ∈ parts H

X ∈ parts H

X.Y ∈ parts H

Y ∈ parts H

{X}K ∈ parts H

X ∈ parts H

• example: parts {Agent A.Nonce Nb, Key K} =
{Agent A.Nonce Nb, Agent A, Nonce Nb, Key K}

• used : event∗→ ℘(message)
• components contained in a trace of events:

• defined recursively:

used [] =
⋃

A parts (initState A)
used (Says A B X _ evs) = parts {X} ∪ used evs

used (Notes A X _ evs) = parts {X} ∪ used evs
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 217

Agent Knowledge

• knows : agent→ event∗→ ℘(message)

• defined recursively:

knows C [] = initState C

knows C (Says A B X _ evs) = knows C evs ∪
(if C = A ∨ C = Spy then {X} else ∅)

knows C (Notes A X _ evs) = knows C evs ∪
(if (C = A ∧ C 6= Spy)∨
(A ∈ bad ∧ C = Spy) then {X} else ∅)

• abbreviation: spies ≡ knows Spy

• properties: e.g. X ∈ spies evs −→ X ∈ initState Spy ∨
∃A B. Says A B X ∈ set(evs) ∨ (Notes A X ∈ set(evs)∧A ∈ bad):

The intruder has initial knowledge and learns all messages sent,

as well as all messages noted by compromised (“bad”) principals.
Formal Security Modeling, LMU München, SS 2005

David von Oheimb 218

Analyzing Messages

• analz : ℘(message)→ ℘(message):

• components actually derivable

• defined inductively:

X ∈ H

X ∈ analz H

X.Y ∈ analz H

X ∈ analz H

X.Y ∈ analz H

Y ∈ analz H

{X}K ∈ analz H Key (invKey K) ∈ analz H

X ∈ analz H

• NB: no rule for Hash, because hashing is not invertible.

• properties: analz G ∪ analz H ⊆ analz (G ∪H), etc.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 219

Synthesizing Messages

• synth : ℘(message)→ ℘(message):

• messages constructable

• defined inductively:

X ∈ H

X ∈ synth H Agent A ∈ synth H Number N ∈ synth H

X ∈ synth H

Hash X ∈ synth H

X ∈ synth H Y ∈ synth H

X.Y ∈ synth H

X ∈ synth H Key K ∈ H

{X}K ∈ synth H

• properties: analz (synth H) = analz H ∪ synth H, etc.

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 220

Needham-Schroeder-Lowe Protocol
theory NS_Public = Public:

consts ns_public :: "event list set"

inductive ns_public intros

Nil: "[] ∈ ns_public"

Fake: " [[evsf ∈ ns_public; X ∈ synth (analz (spies evsf))]]

=⇒ Says Spy B X # evsf ∈ ns_public"

NS1: " [[evs1 ∈ ns_public; Nonce NA /∈ used evs1]]

=⇒ Says A B {Nonce NA. Agent A}(pubEK B) # evs1 ∈ ns_public"

NS2: " [[evs2 ∈ ns_public; Nonce NB /∈ used evs2;

Says A’ B {Nonce NA. Agent A}(pubEK B) ∈ set evs2]]

=⇒ Says B A {Nonce NA. Nonce NB. Agent B}(pubEK A) # evs2 ∈ ns_public"

NS3: " [[evs3 ∈ ns_public;

Says A B {Nonce NA. Agent A}(pubEK B) ∈ set evs3;

Says B’ A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs3]]

=⇒ Says A B {Nonce NB}(pubEK B) # evs3 ∈ ns_public"

lemma "∃ NB. ∃ evs ∈ ns_public. Says A B {Nonce NB}(pubEK B) ∈ set evs"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 221

Needham-Schroeder-Lowe: Properties for Alice
lemma Spy_analz_priEK :

" [[evs ∈ ns_public]] =⇒ (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"

lemma no_nonce_NS1_NS2: " [[evs ∈ ns_public;

{Nonce NA. Agent A}(pubEK B) ∈ parts (spies evs);

{NA’. Nonce NA. Agent D}(pubEK C) ∈ parts (spies evs)]]

=⇒ Nonce NA ∈ analz (spies evs)"

lemma unique_NA:

" [[{Nonce NA. Agent A}(pubEK B) ∈ parts(spies evs);

{Nonce NA. Agent A’}(pubEK B’) ∈ parts(spies evs);

Nonce NA /∈ analz (spies evs); evs ∈ ns_public]] =⇒ A=A’ ∧ B=B’"

theorem Spy_not_see_NA:

" [[Says A B {Nonce NA. Agent A}(pubEK B) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns_public]] =⇒ Nonce NA /∈ analz (spies evs)"

theorem A_trusts_NS2:

" [[Says A B {Nonce NA. Agent A}(pubEK B) ∈ set evs;

Says B’ A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns_public]]

=⇒ Says B A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 222

Needham-Schroeder-Lowe: Properties for Bob
lemma B_trusts_NS1 : " [[evs ∈ ns_public; Nonce NA /∈ analz (spies evs);

{Nonce NA. Agent A}(pubEK B) ∈ parts (spies evs)]] =⇒
Says A B {Nonce NA. Agent A}(pubEK B) ∈ set evs"

lemma unique_NB :

" [[CrypT(pubEK A) {|Nonce NA, Nonce NB, Agent B |} ∈ parts (spies evs);

{Nonce NA’. Nonce NB. Agent B’}(pubEK A’) ∈ parts (spies evs);

Nonce NB /∈ analz (spies evs); evs ∈ ns_public]] =⇒ A=A’ ∧ NA=NA’ ∧ B=B’"

theorem Spy_not_see_NB:

" [[Says B A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns_public]] =⇒ Nonce NB /∈ analz (spies evs)"

theorem B_trusts_NS3: " [[A /∈ bad; B /∈ bad; evs ∈ ns_public;

Says B A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs;

Says A’ B {Nonce NB}(pubEK B) ∈ set evs;]]

=⇒ Says A B {Nonce NB}(pubEK B) ∈ set evs"

theorem B_trusts_protocol: " [[A /∈ bad; B /∈ bad; evs ∈ ns_public;

Says B A {Nonce NA. Nonce NB. Agent B}(pubEK A) ∈ set evs;

{Nonce NB}(pubEK B) ∈ parts (spies evs)]]

=⇒ Says A B {Nonce NA. Agent A}(pubEK B) ∈ set evs"

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 223

Conclusions on Inductive Method

• operational protocol model (event traces)

• focuses on events, states not directly accessible

• rather simple foundations, rather easily understood

• mechanized using a theorem prover like Isabelle/HOL

• proofs are interactive, only semi-automatic

• conducting proofs gives insights in protocol features

• flaws come out in terms of unprovable goals.

• can handle complex protocols (like e.g. SET)

• analysis takes days or weeks

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 224

Outline

• Cryptographic Ingredients

• Crypto Protocols

• Paulson’s Inductive Method

+ Model Checking with the AVISPA Tool

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 225

AVISPA Tool

Output Format (OF)

Intermediate Format (IF)

Translator
HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Model−Checker
CL−based SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly
Model−Checker Attack Searcher Protocol Analyser

AtSe

avispa script file

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 226

NSPK specified in HLPSL

%% PROTOCOL: NSPK: Needham-Schroeder Public-Key Protocol
%% VARIANT: original version (of 1978) without key server
%% PURPOSE: Two-party mutual autentication
%% MODELER: David von Oheimb, Siemens CT IC 3, January 2005
%% ALICE_BOB:
%% 1. A - {Na.A}_Kb ----> B
%% 2. A <- {Na.Nb}_Ka --- B
%% 3. A - {Nb}_Kb ------> B
%% PROBLEMS: 3
%% ATTACKS: Man-in-the-middle attack,
%% where in the first session Alice talks with the intruder as desired
%% and in the second session Bob wants to talk with Alice but actually
%% talks to the intruder. Therefore, also the nonce Nb gets leaked.
%% 1.1 A - {Na.A}_Ki --> i
%% 2.1 i(A) - {Na.A}_Kb -> B
%% 2.2 i(A) <- {Na.Nb}_Ka - B
%% 1.2 A <- {Na.Nb}_Ka - i
%% 1.3 A - {Nb}Ki -----> i
%% 2.3 i(A) - {Nb}_Kb ----> B
%%
%% HLPSL:

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 227

role alice (A, B: agent,
Ka, Kb: public_key,
SND, RCV: channel (dy))

played_by A def=

local State : nat,
Na, Nb: text

init State := 0

transition

0. State = 0 /\ RCV(start) =|>
State’:= 2 /\ Na’ := new() /\ SND({Na’.A}_Kb)

/\ secret(Na’,na,{A,B})

/\ witness(A,B,bob_alice_na,Na’)

2. State = 2 /\ RCV({Na.Nb’}_Ka) =|>
State’:= 4 /\ SND({Nb’}_Kb)

/\ request(A,B,alice_bob_nb,Nb’)

end role

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 228

role bob(A, B: agent,
Ka, Kb: public_key,
SND, RCV: channel (dy))

played_by B def=

local State : nat,
Na, Nb: text

init State := 1

transition

1. State = 1 /\ RCV({Na’.A}_Kb) =|>
State’:= 3 /\ Nb’ := new() /\ SND({Na’.Nb’}_Ka)

/\ secret(Nb’,nb,{A,B})

/\ witness(B,A,alice_bob_nb,Nb’)

3. State = 3 /\ RCV({Nb}_Kb) =|>

State’:= 5 /\ request(B,A,bob_alice_na,Na)

end role

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 229

role session(A, B: agent, Ka, Kb: public_key) def=

local SA, RA, SB, RB: channel (dy)

composition

alice(A,B,Ka,Kb,SA,RA)
/\ bob (A,B,Ka,Kb,SB,RB)

end role

%%

role environment() def=

const a, b : agent,
ka, kb, ki : public_key,

na, nb,

alice_bob_nb,

bob_alice_na : protocol_id

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 230

intruder_knowledge = {a, b, ka, kb, ki, inv(ki)}

composition

session(a,b,ka,kb)
/\ session(a,i,ka,ki)
/\ session(i,b,ki,kb)

end role

%%

goal

secrecy_of na, nb

authentication_on alice_bob_nb

authentication_on bob_alice_na

end goal

environment()

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 231

NSPK Variant with Key Server
If Alice/Bob does not know the public key of the peer, asks a key server.

1a. A -------------------- {A.B} ----------> S
1b. A <-------------------- {B.Kb}_inv(Ks) - S

1c. A - {Na.A}_Kb --> B

2a. B - {B.A} ----------> S
2b. B <- {A.Ka}_inv(Ks) - S

2c. A <- {Na.Nb}_Ka - B
3 . A - {Nb}_Kb -> B

role alice (A, B: agent,
Ka, Ks: public_key,

KeyRing: (agent.public_key) set,

SND, RCV: channel(dy))
played_by A def=

local State : nat,
Na, Nb: text,
Kb: public_key

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 232

init State := 0

transition

% Start, if alice must request bob’s public key from key server
ask. State = 0 /\ RCV(start) /\ not(in(B.Kb’, KeyRing))

=|> State’:= 1 /\ SND(A.B)

% Receipt of response from key server
learn. State = 1 /\ RCV({B.Kb’}_inv(Ks))

=|> State’:= 0 /\ KeyRing’:=cons(B.Kb’, KeyRing)

% Start/resume, provided alice already knows bob’s public key
knows. State = 0 /\ RCV(start) /\ in(B.Kb’, KeyRing)

=|> State’:= 4 /\ Na’:=new() /\ SND({Na’.A}_Kb’)
/\ secret(Na’,na,{A,B})
/\ witness(A,B,bob_alice_na,Na’)

cont. State = 4 /\ RCV({Na.Nb’}_Ka)
=|> State’:= 6 /\ SND({Nb’}_Kb)

/\ request(A,B,alice_bob_nb,Nb’)

end role

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 233

Attack: Man in the Middle

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 234

Attack on Needham-Schroeder PK (details)

NSPK #1 NSPK #2

A,N{ }A KC
A,N{ }A KB

AN ,NB{ }KA AN ,NB{ }KA

NB K{ }
C NB K{ }

B

B believes he is speaking with A!

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 235

Examples of kinds of attack

• Replay (or freshness) attack: reuse (parts of) previous messages.

• Man-in-the-middle (or parallel sessions) attack: A↔M↔ B.

• Masquerading attack: pretend to be another principal, e.g.

� M forges source address (e.g., present in network protocols), or

� M convinces other principals that A’s public key is KM.

• Type flaw attack: substitute a different type of message field.

Example: use a name (or a key or ...) as a nonce.

• Reflection attack send transmitted information back to originator.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 236

Attacks on NSPK found with OFMC
Invoking avispa NSPK.hlpsl yields two attacks:

% OFMC
% Version of 2005/06/14
SUMMARY
UNSAFE

DETAILS
ATTACK_FOUND

PROTOCOL
NSPK.if

GOAL
secrecy_of_nb
authentication_on_bob_alice_na

BACKEND
OFMC

COMMENTS
STATISTICS
parseTime: 0.00s

searchTime: 0.13s

visitedNodes: 27 nodes
depth: 3 plies

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 237

ATTACK TRACE
i -> (a,6): start
(a,6) -> i: {Na(1).a}_ki secret(Na(1).na,{a,i})

witness(a.i.bob_alice_na.Na(1),i)
i -> (b,3): {Na(1).a}_kb
(b,3) -> i: {Na(1).Nb(2)}_ka secret(Nb(2).nb,{a,b})

witness(b.a.alice_bob_nb.Nb(2),i)
i -> (a,6): {Na(1).Nb(2)}_ka
(a,6) -> i: {Nb(2)}_ki request(a.i.alice_bob_nb.Nb(2),6)
i -> (i,17): Nb(2) iknows(Nb(2))
i -> (b,3): {Nb(2)}_kb request(b.a.bob_alice_na.Na(1),3)

% Reached State:

% secret(Nb(2).nb,{a,b})
% secret(Na(1).na,{a,i})
% request(b,a,bob_alice_na,Na(1),3)
% witness(a,i,bob_alice_na,Na(1))
% request(a,i,alice_bob_nb,Nb(2),6)
% witness(b,a,alice_bob_nb,Nb(2))
% state_alice(a,b,ka,kb,0,dummy_nonce,dummy_nonce,set_59,3)
% state_bob (b,a,ka,kb,5,Na(1) ,Nb(2) ,set_67,3)
% state_alice(a,i,ka,ki,4,Na(1) ,Nb(2) ,set_71,6)
% state_bob (b,i,ki,kb,1,dummy_nonce,dummy_nonce,set_75,10)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 238

Attack States

Utilizing predicates iknows, secret, witness, and (w)request,
which are stable, i.e. once they become true, they stay so.

• Violation of secrecy:

attack_state secrecy_of_x (X,AgentSet) :=
secret(X,x,AgentSet) &
iknows(X) & not(contains(i,AgentSet))

• Violation of weak authentication:

attack_state weak_authentication_on_a_b_n (A,B,N,SID) :=
wrequest(A,B,a_b_n,N,SID) & not(B=i)
not(witness(B,A,a_b_n,N))

• Violation of strong authentication: as before, or replay attack

attack_state replay_protection_on_a_b_n (A,B,N,SID1,SID2) :=
request(A,B,a_b_n,N,SID1) & not(B=i)
request(A,B,a_b_n,N,SID2) & not(SID1=SID2)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 239

What was wrong with NSPK?

The attack:
NSPK #1 NSPK #2

A,N{ }A KC
A,N{ }A KB

AN ,NB{ }KA AN ,NB{ }KA

NB K{ }
C NB K{ }

B

The problem: in step 2: B → A : {NA.NB}KA
replayed.

Lowe’s solution: B should give his name: B → A : {NA.NB.B}KA

Question: Is the improved version now correct?

?
?

?
?

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 240

OFMC: Falsification using state enumeration

• Inductive definition corresponds to an infinite tree.

...

... ...

Says A->B ...

...

Says A->Spy ...
Says Spy->A ...

Says A->Spy ...
Says B->A ...

...

Says Spy->B ...Says Spy->A ...Says A->Spy ...

• Properties correspond to a subset of nodes, e.g., Na ∈ knows Spy evs.

• State enumeration can be used to find attack in the infinite tree.

• But naive search is hopeless! Challenges:

Tree too wide: the spy is extraordinarily prolific!

Too many interleavings: much “redundant” information.

Below we present three ideas for tackling these problems.
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 241

OFMC Idea 1: symbolic representations
...

• Spy very prolific. Generates all instances of

t, Spy → B : X ∈ P if t ∈ P and X ∈ synthesize(analyze(knows(Spy , t)))

• Alternative: allow messages to contain variables. Apply rules using unification.

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : X1

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : X1 X1 = {X2.X3}Kb

b→ Spy : {X3.Nb}KX2

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : {X2.X3}Kb
X1 = {X2.X3}Kb

b→ Spy : {X3.Nb}KX2

Spy → a : {X3.Nb}KX2

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : {X2.X3}Kb
X1 = {a.Na}Kb

b→ Spy : {X3.Nb}KX2

Spy → a : {X3.Nb}KX2

a→ Spy : {Nb}KSpy
X2 = a, X3 = Na

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : { a .Na}Kb
X1 = {a.Na}Kb

b→ Spy : {Na.Nb}Ka

Spy → a : {Na.Nb}Ka

a→ Spy : {Nb}KSpy
X2 = a, X3 = Na

Spy → b : {Nb}Kb

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

a→ Spy : {a.Na}KSpy

Spy → b : { a .Na}Kb

b→ Spy : {Na.Nb}Ka

Spy → a : {Na.Nb}Ka

a→ Spy : {Nb}KSpy

Spy → b : {Nb}Kb

A→ B : {A.NA}KB

B → A : {NA.NB}KA

A→ B : {NB}KB

• For messages X from the Spy: X ∈ synthesize(analyze(knows(Spy , t))).

=⇒ Implement using narrowing with constraints.
Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 242

OFMC Idea 2: partial order reduction
...

symbolic

reduction

partial−order

representation

• Many messages are redundant. Example:

The Spy isn’t helped by repeating the same transmission.

• Many orderings are redundant. Example:

The Spy need only say X if the recipient immediately acts on it.

• Formally these define equivalence relations on traces that are

respected by security properties.

=⇒ Restrict search to representatives!

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 243

OFMC Idea 3: lazy data structures

• Lazy evaluation as foundation for “on-the-fly” model checking.

1. Apply narrowing with constraints to build infinite search tree.

2. Use partial order reduction to build a reduced tree.

3. Search the reduced tree by iterative deepening.

• Clean division of model, reduction techniques, and search.

� Tasks are efficiently co-routined in a demand-driven fashion.

� Modern compilers (e.g., for Haskell) produce fast binaries.

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 244

EU Project AVISPA: security sensitive protocols
• Goal: advance the state-of-the-art so that validation becomes standard practice.

 H.323
MT

V−GK MRP H−BE AuF

1.) GRQ(EPID, GKID, 0, CH1,
T1, gx, HMACZZ(GRQ))

13.) GCF(GKID, EPID, CH1,
 CH2, (T13), gy,
 HMACZZ(W), HMACZZ(GKID),
 HMACK(GCF))

14.) RRQ(EPID, GKID, CH2, CH3,
(T14), HMACK(RRQ))

2.) RIP(...)

15.) RCF(GKID, EPID, CH3, CH4,
(T15), HMACK(RCF))

V−BE MRP

4.) 5.) 6.) 7.)

12.) 11.) 10.) 9.) 8.)

3.)

compute DH: gx mod p

compute DH: gy mod p
W:= gx ⊕ gy

K := gxy mod p

K := gxy mod p
W:= gx ⊕ gy

AuthenticationRequest (GRQ(..), GKID, W, HMAC)

AuthenticationConfirmation (HMACZZ(W), HMACZZ(GKID), HMAC)

• Apply to standardization of IETF, ITU, and W3C protocols.

Authentication: Kerberos, AAA, PANA, http-digest
Key agreement: IKEv2
Session control: SIP, H323
Mobility: mobile-IP, mobile QoS, mobile multi-media
End-to-End and Peer-to-Peer scenarios: SOAP, Geopriv

Formal Security Modeling, LMU München, SS 2005 based on slides by David Basin and Luca Viganò

David von Oheimb 245

Conclusions on Model Checking

• operational protocol model (state transitions)

• focuses on messages and states

• simple foundations, easy to use

• mechanized, many model checkers available

• checking is (almost) automatic

• output gives no insights in protocol features

• flaws come out in terms of counterexmples: attack traces

• can handle industrial-scale protocols (like e.g. H.530)

• analysis takes hours or days

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 246

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 247

Evaluation & Certification: Goals & General Approach

Goal: Gaining confidence in the security of a system

• What are the goals to be achieved?

• Are the measures employed appropriate to achieve the goals?

• Are the measures implemented correctly?

Approach: assessment (evaluation) of system security by neutral experts

• Understanding how the system’s security functionality works

• Gaining evidence that security functionality is correctly implemented

• Gaining evidence that the integrity of the system is kept

Result: Successful evaluation is awarded a certificate

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 248

History of Evaluation Criteria

1985: TCSEC Trusted Computer System Evaluation Criteria (USA)

Particular security functionalities required

1989-93: German, UK, French, Canadian criteria

1991: ITSEC Information Technology Security Evaluation Criteria

Harmonisation of European criteria

ITSEC assurance levels provide basis for CC assurance levels

1993: Federal Criteria Draft (USA)

Attempt to update TCSEC and harmonise TCSEC+CTCPEC

Introducing Protection Profiles

1999: CC Common Criteria for IT Security Evaluation (ISO/IEC 15408)

Flexible approach (functional and assurance requirements components)

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 249

Common Criteria: Process Scheme

���������

�����	
���
�
���	�

���
���

�������
�
���	� ����
�
���
�
���	��������� ������	�
�
���
�	

���	�
���	�

�������
�

����
�
���
�

����
	��

�����	
���
�

���
���

�

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 250

CC: Security Target

• Definition of the Target of Evaluation (TOE)

and separation from its environment

• Definition of the TOE’s security threats, objectives and requirements

• Introduction of TOE Security Functions (TSF):

measures intended to counter the threats

• Determination of Evaluation Assurance Level (EAL)

⇒ The Security Target is the document to which

all subsequent evaluation activities and results refer!

⇒ Interpretation of results is only reasonable if referring to the ST context

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 251

CC: Evaluation Assurance Levels

EAL1: functionally tested

EAL2: structurally tested

EAL3: methodically tested and checked

EAL4: methodically designed, tested, and reviewed,

including security policy model

EAL5: semiformally designed and tested

including formal security policy model

EAL6: semiformally verified design and tested

EAL7: formally verified design and tested

Increasing requirements on scope, depth and rigor

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 252

CC: EAL example: EAL5

In red: additional requirements compared to EAL4

• Complete source code is subject to analysis

• Formal security policy model

• Semiformal description techniques

• Modular design

• Documentation of developer’s tests up to low-level design

• Vulnerability analysis refers to moderate attack potential

• Covert channel analysis

• Comprehensive configuration management

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 253

CC: How to scale an Evaluation

• Separation of TOE and TOE environment

• Detail level of TOE summary specification

• Definition of security objectives

• Definition of security functional requirements

• Strength-of-function claims

• EAL selection

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 254

Contents

• Introduction

• Access Control

• Information Flow

• Cryptoprotocol Analysis

• Evaluation & Certification

Formal Security Modeling, LMU München, SS 2005

David von Oheimb 255

Conclusion

A formal security model is an abstract formal description of a system

(and its environment) that focuses on the relevant security issues.
M BA

M

{ N , A }K

{ N , A }K

{ N , N , }K

A

A B

M

A B{ N , N , }KB

A B

A

A

Interpretation

Abstraction

• improves understanding of security issues by

� abstraction: concentration on the essentials helps to keep overview

� systematic approach: generic patterns simplify the analysis

• prevents ambiguities, incompleteness, and inconsistencies

and thus enhances quality of specifications

• provides basis for systematic testing or even formal verification

and thus validates correctness of implementations

⇒ gives maximal confidence in the security of the system
Formal Security Modeling, LMU München, SS 2005

