EU FP7-2007-ICT-1, ICT-1.1.4, STREP project no. 216471 SIEMENS
Jan 2008 - Dec 2010, 590 PMs, 6M€ budget, 3.8M€ EC contribution

Service
Broker

ASLan++ — the
AVANTSSAR'

Publish

Specification o
La n g u a g e Cons“ Interact H Provider

Presented at the FMCO 2010, Graz, Austria, 2010-Nov-30

1 Automated ValidatioN of Trust and Security of Service-oriented Architectures

Dr. David von Oheimb, Siemens CT, IT Security 1 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ — the AVANTSSAR Specification Language

AVANTSSAR

Dr. David von Oheimb, Siemens CT, IT Security 2 © 2010 AVANTSSAR consortium

SIEMENS
AVANTSSAR project motivation

ICT paradigm shift: from
components to services,
composed and reconfigured
dynamically in a
demand-driven way.

N o=
= A2l Unified =
— Customer -

View
Trustworthy service _Blness _
may interact with others reditCard ~ ' Mortgage

causing novel trust and

security problems. : o
% & ReUsable SEIVICES @ w‘-‘

For the composition of .

individual services + ! 33

: : : |

into service-oriented %ﬁb "’h-.,lm" 7

architectures, validation
Is dramatically needed.

Partner Credit Data Back-end Systam Back-end System Customer Data

Dr. David von Oheimb, Siemens CT, IT Security 3 © 2010 AVANTSSAR consortium

SIEMENS
Example 0: Google SAML-based Single Sign-On (SSO)

Google

Physician £ = o Nl
N\

0 _,, @

Hospital Other healthcare
(Identity Provider IdP) related services

Dr. David von Oheimb, Siemens CT, IT Security 4 www.ct.siemens.com © 2010 AVANTSSAR consortium

SIEMENS
Example 0: Google SAML SSO protocol flaw

S1.C, SP, URI
Al. C,1dP, AuthReq(ID, SP), URI

b4

»

SAML Authentication Protocol
REDIRECT
A2. C,IdP, AuthReq(ID, SP), URI

.
L

—

‘I I[dP builds an authentication assertior

A3. Response(ID, SP,1dP, {AA},.—1),URI | 44 = Authﬁssertaxﬁ C, IdP,}{)

IdP f

-2
L

GDST A4. Response(ID,SP, IdP, {AA} .), URI

IdP

Y

S2! Resource

A

Fig. 1. SP-Initiated SSO with Redirect /POST Bindings

Dr. David von Oheimb, Siemens CT, IT Security 5 www.ct.siemens.com © 2010 AVANTSSAR consortium

SIEMENS
AVANTSSAR consortium

Industry Academia

SAP Research France, Sophia Antipolis Universita di Verona
Siemens Corporate Technology, Minchen Universita di Genova
IBM Ziurich Research Labs (initial two years) ETH Zurich
OpenTrust, Paris INRIA Lorraine

UPS-IRIT, Toulouse
IEAT, Timigoara

Expertise

Service-oriented enterprise architectures Security engineering

Security solutions Formal methods
Standardization and industry migration Automated security validation

Dr. David von Oheimb, Siemens CT, IT Security 6 © 2010 AVANTSSAR consortium

SIEMENS
AVANTSSAR main objectives and principles

» Formal language for specifying trust and security properties of
services, their policies, and their composition into service-oriented
architectures

» Automated toolset supporting the above
= Library of validated industry-relevant case studies

= Speed up development of new service infrastructures
» Enhance their security and robustness
» |ncrease public acceptance of SOA-based systems

Dr. David von Oheimb, Siemens CT, IT Security 7 © 2010 AVANTSSAR consortium

SIEMENS
AVANTSSAR modeling & analysis approach with ASLan++

é i

BPMN + Annotations
- BPEL + Annotations

ASLan++
Specification

The AVANTSSAR Validation Platform

Servi :
Policy / Requirements - Secured service

]
Fn

| g
Vﬂ!ﬁﬂsﬁﬁy L | 5=

Composed service

lidation
problem
Translator — » Modelcheckers Secure
ASLan
%o
— . 2] —: Tool input/foutput
Vulnerability 3 P : Policy
T S : Service
feedbm:k = ’i;;—_ — CP : Composed Policy
==l CS : Composed Service
I TS : Trust and Security

Dr. David von Oheimb, Siemens CT, IT Security 8 www.ct.siemens.com © 2010 AVANTSSAR consortium

S) SIEMENS
AVANTSSAR: current status

WP2: ASLan++ supports the formal specification
of trust and security related aspects of SOAs, and
of static and dynamic service and policy composition

WP3: Techniques for: satisfiability check of policies,
model checking of SOAs w.r.t. dynamic policies,
attacker models, compositional reasoning, abstraction

WP4: Second prototype of the AVANTSSAR Platform

WPS5: Formalization of industry-relevant problem cases
as ASLan++ specifications and their validation

WP6: Ongoing dissemination and migration
into scientific community and industry

Dr. David von Oheimb, Siemens CT, IT Security 9 www.ct.siemens.com © 2010 AVANTSSAR consortium

SIEMENS
AVANTSSAR conclusion and industry migration

Contemporary SOA has complex structure and security requirements
including dynamic trust relations and application-specific policies.

On integration of the AVANTSSAR Platform in industrial development,
a rigorous demonstration that the security requirements are fulfilled will:

= assist developers with security architecture, analysis and certification
= increase customers’ confidence in modern service-oriented architectures

The AVANTSSAR Platform
advances the security of
industrial vendors’ service offerings:

E-Busi|———— Citizen
ness : J Portals

AVANTSSAR will thus strengthen |

the competitive advantage of Infrastr] - =~ Health
the products of the industrial partners. ucture - = | care

5 5

Dr. David von Oheimb, Siemens CT, IT Security 10 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ — the AVANTSSAR Specification Language

ASLan++

Dr. David von Oheimb, Siemens CT, IT Security 11 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan++ model of NSPK_Cert (1): Alice & Bob

specification NSPK Cert

entity Alice (Actor, B: agent) {

symbols
Na, Nb: message;
body {

if (trusted pk(B)) {

B

Na := fresh()

Actor -> B: {secret Na:Na.Actor} pk(B);

B -> Actor: {Alice strong auth Bob on Na:Na.secret Nb:?Nb} pk(Actor) ;
Actor -> B: {Bob strong auth Alice on Nb:Nb} pk(B); } }

}

entity Bob (Actor: agent) {
symbols
A: agent;
Na, Nb: message;
body {
?A -> Actor: {secret Na:?Na.?A} pk(Actor); % Bob learns A here!
iIT (trusted pk(A)) {
Nb := fresh();
Actor -> A: {Alice strong auth Bob on Na:Na.secret Nb:Nb} pk(A);
A -> Actor: {Bob strong auth Alice on Nb:Nb} pk(Actor); } }

b
}

Dr. David von Oheimb, Siemens CT, IT Security 12 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan++ model of NSPK_Cert (2): certificates

specification NSPK Cert channel model CCM
entity Environment

symbols
trusted pk(agent): fact;

trusted agent (agent): fact;
root ca, ca: agent;
1esued (message) : fact;

macros
A->signed (M)
C->cert (A, PK)

{M} inv(pk(a)) .M;
C->signed (C.A.PK); % no validity period etc.

clauses
trusted pk direct (C):
trusted pk(C) :-
trusted agent (C) ;

trusted pk cert chain(A,B):
trusted pk(A) :-
trusted pk(B) & issued(B->cert (A,pk(A)));
Dr. David von Oheimb, Siemens CT, IT Security 13 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan++ model of NSPK_Cert (3): sessions

entity Session (A, B: agent) {
entity Alice (Actor, B: agent) {..}
entity Bob (Actor: agent) {..}
body ({
issued(ca->cert (A,pk(A))) ;
issued (ca->cert (B, pk(
new Alice (A,B) ;
new Bob (B) ;

vy,
~—
~—
~—
~

}

goals
secret Na: {A,B};
secret Nb: {A,B};
Alice strong auth Bob on Na: B *->> A;
Bob strong auth Alice on Nb: A *->> B;
J
body { % need two sessions for Lowe’s attack
trusted agent (root ca) ;
issued (root ca->cert(ca,pk(ca))); % root-signed CA certificate

)
issued (ca->cert (i ,pk(i))); % CA-signed intruder cert
any A B. Session(A,B) where A!=B;

any A B. Session(A,B) where A!=B; } }
Dr. David von Oheimb, Siemens CT, IT Security 14 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ language design

» Design goals
* Expressive enough for modeling a wide range of SOAs
» Enable succinct specifications, for minimal handling effort
» High abstraction level, to reduce model complexity
* Close to specification languages for security protocols and web services
* Close to procedural and object-oriented programming languages
» Minimal learning effort for non-expert modelers
= Relation with ASLan
* ASLan++ more high-level than ASLan (formerly called IF)
« ASLan++ semantics defined by translation to ASLan
» Main differences:
vs. flat transition system
vs. term rewriting rules

vs. attack states & auxiliary events
Dr. David von Oheimb, Siemens CT, IT Security 15 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ features for system modelling

= Overall structure
» Hierarchy and modularity via entities (similar to classes)
* Dynamic entity instantiation (with underspecified agents)
 Parallel composition of sequential execution of instances
= Local declarations

. with subtyping, tuples and generic sets

. : , statically scoped instance variables

. describing policies and (limited) deductions
» Local execution

* Classical constructs (e.g. if and while)

. and fresh value generation

. (unification modulo some equalities)

. instructions with guards

. with security assumptions

Dr. David von Oheimb, Siemens CT, IT Security 16 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ features for security property modelling

= Security goals

e Invariants (LTL formulas)

» Assertions (LTL formulas)

» Secrecy of values shared among a group of agents

» Channel goals: authenticity, confidential transmission, freshness, ...
= Attacker model

 Built-in model
« Extendible
. and dynamic compromise of agents

= Limitations (mostly due to model-checking)
* No term evaluation (e.g., arithmetic) except very limited equations
* No notion of time
* No abstract data types and visibility modifiers

* No object references except for sets
Dr. David von Oheimb, Siemens CT, IT Security 17 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ — the AVANTSSAR Specification Language

Dr. David von Oheimb, Siemens CT, IT Security 18 © 2010 AVANTSSAR consortium

SIEMENS
Example 2: Process Task Delegation (PTD)

Authorization and trust management via token passing

* There are three roles in the protocol (C, A, TS)
and potentially several instances for each role

* The client C (or user) uses the system for Result

authorization and trust management, e.g. SSO
« Each application A is in one domain,
each domain has exactly one active trust server TS

* Al uses the system to pass to A2 some Order
and an ADT (Authorization Decision Token)

— Order contains:
» workflow task information

* application data < » Secure channel
« information about the client C and his current activity LT TTST + Insecure channel

to be delivered securely (integrity and confidentiality) - Trust domain

— ADT is mainly authorization attributes and decisions
e sent via TS1 and TS2, who may weaken it
e must remain unaltered, apart from weakening by TS Security prerequisites:
» must remain confidential among intended parties * PKl is used for A and TS, username & pwd for C

*C, Al, and A2 must be authenticated among each other * The TS enforce a strict time-out

Information flow

Dr. David von Oheimb, Siemens CT, IT Security 19 www.ct.siemens.com © 2010 AVANTSSAR consortium

SIEMENS
Example 2: Message Sequence Chart of PTD

C = Client I Al= lication1 TS1 = Trust Server (A1} I TS2 = Trust Server (A2) I A2 = Application2

(|} Details.Meta.C ->*
{ll) <=* List of Choices
(1) C Makes a Choice *->*

ADT=make_ADT(ADTo,Meta,cﬂ

(2) ADT.A2 *->*

| TaskHandle=Ts1.A2.Seqr |

{3) *<-* TaskHandle .SKey

M=A1 .TaskHandIe.scrypt(SKey,Orderﬁ

(4) *<-* M.mac({SKey,M)
(5) M,mac(SKey,M} >~

(6) *<-* TaskHandle

{7) *<-* TaskHandle
{8) TaskHandle.ADT.SKey *->*

{9) TaskHandle ADT.SKey *->*
(10} <* R.mac(SKey. R)

(11) R.mac(SKey, R) ->*
(12) *<-* client pari{Result}

R=A2 A1 .scrypt(SKey,Resultﬂ

Dr. David von Oheimb, Siemens CT, IT Security 20 © 2010 AVANTSSAR consortium

SIEMENS
Example 2: ASLan++ model of PTD Application A2

entity A2 (Actor: agent, TS2: agent) { % Application 2, connected with Trust Server 2
symbols
C0,C,A1: agent;
CryptedOrder, Order, Details, Results, TaskHandle, ADT, MAC: message;
SKey: symmetric_key;
body { while (true) {
select {
% A2 receives (via some CO0) a package from some Al. This package includes encrypted and
% hashed information. A2 needs the corresponding key and the Authorization Decision Token.
on (?CO -> Actor: (?A1.Actor.?TaskHandle.?CryptedOrder).?MAC): {
% A2 contacts its own ticket server (TS2) and requests the secret key SKey and the ADT.
Actor *->* TS2: TaskHandle;
}
% A2 receives from Al the SKey and checks if the decrypted data corresponds to the hashed data
on (TS2 *->* Actor: (?ADT.?SKey).TaskHandle & CryptedOrder = scrypt(SKey,?,7Details.?C)
& MAC = hash(SKey, A1.Actor.TaskHandle.CryptedOrder)): {
% A2 does the task requested by Al, then sends to Al via C the results encrypted with the secret key.
Results := fresh(); % in general, the result depends on Details etc.
Actor -> C: Actor.C.A1. scrypt(SKey,Results);
}i}
goals
authentic C_A2 Details: C *-> Actor: Details;
secret_Order: secret (Order, {Actor, A1});

}

Dr. David von Oheimb, Siemens CT, IT Security 21 © 2010 AVANTSSAR consortium

SIEMENS
Example 3: Electronic Car Registration policies

local policv

RegOffCA can say
who is RegOffHead
who is RegOffEmpl

Peter is RegOffEmpl
of CarRegOffice

(signed by RegOffCA

ACL
anybody,

get empty forms write(..)
RegOffHead, write CentrRep Peter Melinda RegOffCA
RegOffEmpl, read
RegOffEmpl, write,

if his RegOffHead
says so

. Melinda is RegOffHead Peter can write
Question: of CarRegOffice CentrRep

(signed by RegOffCA) (signed by Melinda)

May Peter write to CentrRep?

Dr. David von Oheimb, Siemens CT, IT Security 22 www.ct.siemens.com © 2010 AVANTSSAR consortium

SIEMENS
Example 3: On-the-fly inferences via Horn clauses

DKAL-style trust inference, e.g. trust application:

trustapp (P, Q,AnyThing) :
P->knows (AnyThing) :-
P->trusts (Q,AnyThing) &
P->knows (Q->said (AnyThing)) ;

Basic facts, e.g. the central repository fully trusts the CA

centrRepTrustCA (AnyThing) :
centrRep->trusts (theCA,AnyThing) ;

State-dependent (evolving) facts, e.g. department head manages a set of trusted employees:

trustedEmplsCanStoreDoc (Head) : forall Empl.
Head->knows (Empl->canStoreDoc) :-

contains (TrustedEmpls, Empl) ;

Use of certificates, e.g. the central repository trusts the department head on employee's rights:

centrRepTrustHead (Head, Empl) :
centrRep->trusts (Head, Empl->canStoreDoc) :-
centrRep->knows (theCA->said (Head->hasRole (head))) &
centrRep->knows (theCA->said (Empl->hasRole (employee))) ;

Dr. David von Oheimb, Siemens CT, IT Security 23 © 2010 AVANTSSAR consortium

SIEMENS
ASLan++ — the AVANTSSAR Specification Language

Dr. David von Oheimb, Siemens CT, IT Security 24 © 2010 AVANTSSAR consortium

SIEMENS
Semantics of channel goals as LTL formulas

A channel goal requiring authentication, directedness, freshness, and confidentiality:
secure Alice Payload Bob: A *->>* B: Payload;
On the sender side: Actor -> B: ...Payload...;

witness (Actor,B,auth Alice Payload Bob, Payload) ;
secret (Payload, secr Alice Payload Bob, {Actor,B});

On the receiver side: A -> Actor: ...?Payload...;
request (Actor,A,auth Alice Payload Bob, Payload, IID) ;
secret (Payload, secr Alice Payload Bob, {A,Actor}) ;

Semantics of the authentication and directedness part:
forall A,B,P,M,IID. [] (request(B,A,P,M,IID) =>
(<-> (witness(A,B,P,M)) | (dishonest(A) & iknows(M))))

Semantics of the freshness (replay protection) part:
forall A,B,P,M,IID IID’. [] (request(B,A,P,M,IID) =>
(! (<-> (request(B,A,P,M,IID’) & ! (IID=IID')) | dishonest (4)))

Semantics of the confidentiality part:
forall M,P,As. [] ((secret(M,P,As) & iknows (M)) => contains(i, As))

Dr. David von Oheimb, Siemens CT, IT Security 25 © 2010 AVANTSSAR consortium

SIEMENS
Optimization: Merging transitions on translation

A series of transmission and internal computation ASLan++ commands like

receive (A, ?M) ;
N := fresh{() ;
send (A, N) ;

could bet translated into individual ASLan transitions like:
state entity(Actor, IID, 1, dummy, dummy) . iknows (M) =>

state entity(Actor, IID, 2, M , dummy)

state entity(Actor, IID, 2, M , dummy) =[exists N]=>
state entity(Actor, IID, 3, M , N)

state entity(Actor, IID, 3, M , N) =>

state entity(Actor, IID, 4, M , N) . i1knows (N)

but can be "compressed’ into a single atomic ASLan transition:

state entity(Actor, IID, 1, dummy, dummy) . iknows (M) =[exists N]=>
state entity(Actor, IID, 4, M , N) . 1knows (N)

Even internal computations containing loops etc. can be "glued together” to avoid interleaving.
This dramatically reduces the search space because a lot of useless branching is avoided.

Dr. David von Oheimb, Siemens CT, IT Security 26 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan model of NSPK (1): types, functions

Specification: NSPK

Channel model: CCM

Goals as attack states: yes

Orchestration client: N/A

Horn clauses level: ALL

Optimization level: LUMP

Stripped output (no comments and line information): no

section signature:

message > text

ak : agent -> public key

ck : agent -> public key

defaultPseudonym : agent -> agent

descendant : nat * nat -> fact

dishonest : agent -> fact

isAgent : agent -> fact

pk : agent -> public key

secr Alice Bob PayloadA set : nat -> set (agent)

secr Bob Alice PayloadB set : nat -> set (agent)
secret Na set : nat -> set (agent)

secret Nb set : nat -> set(agent)

sign : private key * message -> message

state Alice : agent * nat * nat * agent * text * text * text * text -> fact
state Bob : agent * nat * nat * agent * text * text * text * text -> fact
state Environment : agent * nat * nat -> fact

state Session : agent * nat * nat * agent * agent -> fact

o° o° o° o° o° oP°

o\°

Dr. David von Oheimb, Siemens CT, IT Security 27 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan model of NSPK (2): constants, variables

PayloadA : text

section types: E S B PayloadB text ey londa 1
T a5 a : text
A : agent E S B PayloadB 1 : text PzglgadB_- text
Actor agent 35 8 Bl 5 W PayloadB 1 : text
Ak arg 1 agent B auR) i et Pk _arg 1 : agent
B 5 oot E S SL : nat e 8 e
-) . E aABPA IID : nat T
ar agen 2 .

Degcegaant Cgljosure arg 1 : nat B onnoA B . meootds Sign arg 1 : private key

— _arg_- : E_aABPA_R§q aoSut Sign _arg 2 : message
Descendant Closure arg 2 : nat E_aABPA Wit : agent Wit : agent
Descendant Closure arg 3 : nat E_aBAPB IID : nat a : agent

— n - E aBAPB M 3
E S A Actor agent -2 S I atag : text
=== E_sABPA Knowers set (agent) auth Alice Bob PayloadA
E S AB agent E_sABPA Msg : message - sreteeel Ad
E S A IID : nat E sBAPB Knowers : set (agent) auth Bob Alice PayloadB
E S A SL : nat E sBAPB Msg : message protocol id
E S Actor agent E sN Knowers : set (agent) b : agent -
E S B A : agent ?f;NfMigt: message ctag : text
ESBA 1 agent 11D 1 . nat dummy agent agent
E_S_B_A_Z agent -~ dummy nat : nat
—FE g UID) 2 g TEKE dummy text : text
E S B Actor agent IID_3 : nat false : fact
E S B IID : nat ;ID—4 : nat secr Alice Bob PayloadA
E S B Na 1 : text Na -'text secr_Bob Alice PayloadB
E S B Nb : text ' protocol_id
—P—— BELS e secret Na : protocol id
E_S B Nb 1 text Blo 5 EERE secret Nb : protocol id
E S B PayloadA : text Bl 3o BEssE stag : text
E S B PayloadA 1 text true : fact

Dr. David von Oheimb, Siemens CT, IT Security 28 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan model of NSPK (3): initial state, clauses

section 1nits: section hornClauses:
hc public ck(Ck _arg 1) :=

initial state init := iknows (ck (Ck_arg 1)) :-
dishonest (i) iknows (Ck_arg_ 1)
iknows (a) . hc public ak(Ak arg 1) :=
iknows(atag) iknows (ak (Ak_arg 1)) :-
: iknows (Ak arg 1
iknows (b) . (Ak_arg_1)
iknows (ctag) . hc public pk(Pk_arg 1) :=
iknows () iknows (pk (Pk_arg 1)) :-
. iknows (Pk_arg 1)
iknows (inv(ak(i))) .
iknows (inv(ck (1))) . hc public sign(Sign arg 1, Sign arg 2) :=
. iknows (sign(Sign arg 1, Sign arg 2)) :-
iknows (.'LIlV (())) : iknows (Sign arg 1),
iknows (stag) . iknows (Sign_arg 2)
isAgent (a) :) . :
. hc inv _sign(Sign _arg 1, Sign arg 2) :=
1SAgent (b) . iknows (Sign _arg 2) :-

j_SAgent (1) . iknows (sign(Sign arg 1, Sign arg 2))
state_Env1ronment (hc descendant closure (Descendant Closure arg 1,
dummy_agent ’ Descendant Closure arg 2, Descendant Closure arg 3) :=
dummy nat, 1). descendant (Descendant Closure arg 1,
— Descendant Closure arg 3) :-
descendant (Descendant Closure arg 1,
Descendant Closure arg 2),
descendant (Descendant Closure arg 2,
Descendant Closure arg 3)

true

Dr. David von Oheimb, Siemens CT, IT Security 29 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan model of NSPK (4): transition rules

section rules:

o

line 75
new instance
new Session(a,b)
lumped line 76 (skipped step label 2)
new instance
new Session(a,i)
step step 1 Environment 1line 75 (Actor, IID, IID 1, IID 2) :=
state Environment (Actor, IID, 1)
=[exists IID 1, IID 2]=>
descendant (IID, IID 1).
descendant (IID, IID 2).
state Environment (Actor, IID, 3).
state Session(dummy agent, IID 1, 1, a, b).
state Session(dummy agent, IID 2, 1, a, i)

o° o o° o

o\

o

line 62
guard
!dishonest (A)
lumped line 63 (skipped step label 2)
new instance
new Alice (A, B)
step step 2 Session line 62(A, B, E S Actor, E S IID, IID 3) :=
not (dishonest (4)) .
state Session(E S Actor, E S IID, 1, A, B)
=[exists IID 3]=>
descendant (E_ S IID, IID 3).
state Alice(A, IID 3, 1, B, dummy text, dummy text, dummy text, dummy text).
state Session(E S Actor, E S IID, 3, A, B)

o o o° o

o\°

... (some 5 more pages of rules)
Dr. David von Oheimb, Siemens CT, IT Security 30 © 2010 AVANTSSAR consortium

SIEMENS
Example 1: ASLan model of NSPK (5): goals

section goals:

attack state auth Alice Bob PayloadA (E_aABPA IID, E aABPA Msg, E aABPA Req, E aABPA Wit) :=
not (witness (E_aABPA Wit, E aABPA Req, auth Alice Bob PayloadA, E aABPA Msg)) .
request (E_aABPA Req, E aABPA Wit, auth Alice Bob PayloadA, E aABPA Msg, E aABPA IID) &
not (equal (i, E_aABPA Wit))

attack state auth Bob Alice PayloadB(E_aBAPB IID, E aBAPB Msg, Req, Wit) :=
not (witness (Wit, Req, auth Bob Alice PayloadB, E_aBAPB Msg)) .
request (Req, Wit, auth Bob Alice PayloadB, E_aBAPB Msg, E aBAPB IID) &
not (equal (i, Wit))

attack state secr Alice Bob PayloadA (E_sABPA Knowers, E sABPA Msg) :=
iknows (E_sABPA Msg) .
not (contains (i, E_sABPA Knowers)) .
secret (E_sABPA Msg, secr Alice Bob PayloadA, E sABPA Knowers)

attack state secr Bob Alice PayloadB(E_sBAPB Knowers, E sBAPB Msg)
iknows (E_sBAPB Msg) .
not (contains (i, E_sBAPB Knowers)) .
secret (E_sBAPB Msg, secr Bob Alice PayloadB, E_sBAPB_Knowers)

attack state secret Na (Knowers, Msg) :=
iknows (Msg) .
not (contains (i, Knowers)) .
secret (Msg, secret Na, Knowers)

attack state secret Nb(E sN Knowers, E sN Msg) :=
iknows (E_sN Msg) .
not (contains (i, E_sN_Knowers)) .
secret (E_sN _Msg, secret Nb, E sN Knowers)

Dr. David von Oheimb, Siemens CT, IT Security 31 © 2010 AVANTSSAR consortium

	EU FP7-2007-ICT-1, ICT-1.1.4, STREP project no. 216471Jan 2008 - Dec 2010, 590 PMs, 6M€ budget, 3.8M€ EC contribution
	ASLan++ — the AVANTSSAR Specification Language
	AVANTSSAR project motivation
	AVANTSSAR consortium
	AVANTSSAR main objectives and principles
	AVANTSSAR modeling & analysis approach with ASLan++
	AVANTSSAR conclusion and industry migration
	ASLan++ — the AVANTSSAR Specification Language
	Example 1: ASLan++ model of NSPK_Cert (1): Alice & Bob
	Example 1: ASLan++ model of NSPK_Cert (2): certificates
	Example 1: ASLan++ model of NSPK_Cert (3): sessions
	ASLan++ language design
	ASLan++ features for system modelling
	ASLan++ features for security property modelling
	ASLan++ — the AVANTSSAR Specification Language
	A2
	Example 2: Message Sequence Chart of PTD
	Example 2: ASLan++ model of PTD Application A2
	Example 3: On-the-fly inferences via Horn clauses
	ASLan++ — the AVANTSSAR Specification Language
	Semantics of channel goals as LTL formulas
	Optimization: Merging transitions on translation
	Example 1: ASLan model of NSPK (1): types, functions
	Example 1: ASLan model of NSPK (2): constants, variables
	Example 1: ASLan model of NSPK (3): initial state, clauses
	Example 1: ASLan model of NSPK (4): transition rules
	Example 1: ASLan model of NSPK (5): goals

