
A Formal Security Model of the Infineon SLE 88
Smart Card Memory Management

David von Oheimb1, Georg Walter2, and Volkmar Lotz1

1 Siemens AG, Corporate Technology, D-81730 Munich
{David.von.Oheimb|Volkmar.Lotz}@siemens.com

2 Infineon AG, Secure Mobile Solutions, D-81609 Munich
Georg.Walter@infineon.com

Abstract. The Infineon SLE 88 is a smart card processor that offers
strong protection mechanisms. One of them is a memory management
system, typically used for sandboxing application programs dynamically
loaded on the chip. High-level (EAL5+) evaluation of the chip requires
a formal security model.
We formally model the memory management system as an Interacting
State Machine and prove, using Isabelle/HOL, that the associated secu-
rity requirements are met. We demonstrate that our approach enables
an adequate level of abstraction, which results in an efficient analysis,
and points out potential pitfalls like non-injective address translation.

Keywords: Security, formal analysis, smart cards, memory management,
Interacting State Machines, Isabelle/HOL.

1 Introduction

Since smart cards are becoming widely spread and are typically used for security-
critical applications, smart card vendors face the demand for validating the se-
curity functionality of their cards wrt. adequacy and correctness. Third-party
evaluation and certification is accepted as the appropriate approach, making it
quite an active field. Certification of smart card processor products according to
the Common Criteria [CC99] typically refers to the Smartcard IC Platform Pro-
tection Profile [AHIP01] and its augmentations like [AHIP02]. Based on these
documents, the security target [WN03] for the Infineon SLE 88 smart card chip
demands assurance level EAL5 to be achieved, in particular requiring formal
reasoning on the requirements level, viz. a formal security model.

Infineon could make use of an extension of the established LKW model
[LKW99] which already covers most aspects of security. Yet the SLE 88 offers
a new security feature that requires special attention: a sophisticated memory
management. For its evaluation we have developed a formal model which we
describe in detail in the present article. The upcoming field of multi application
smart cards motivate protection of applications from each other. The model
shows that this can be effectively achieved with classical hardware based sep-
aration of memory areas. This feature may be used in particular within Java
Virtual Machine implementations, yielding major progress in the area of dy-
namically loadable applications for smart cards.

102 David von Oheimb, Georg Walter, and Volkmar Lotz

The memory management security model is given in terms of Interacting
State Machines (ISMs) introduced in [Ohe02,OL03]. ISMs are state-transition
automata that communicate asynchronously on multiple input and output ports
and thus can be seen as high-level Input/Output Automata [LT89]. They have
turned out to be appropriate for the task of security modeling, for instance the
full formalization of the LKW model with the Isabelle theorem prover in [OL02].

Most of related work on high EAL evaluation for smart cards, done e.g. at
Trusted Logic and Philips, is unpublished. There are publications dealing with
the Java Card runtime system [MT00] and with smart card operating systems in
general [SRS+00]. Note that these focus on software, while we focus on hardware.

2 SLE 88 Memory Management

In this section we introduce the virtual memory system of the SLE 88 with their
associated security objectives and protection mechanisms.

2.1 Memory Organization

The physical memory of the SLE88 family is handled via 22 bit physical effec-
tive addresses (PEAs). Virtual memory is addressed via 32 bit virtual effective
addresses (VEAs). The atomic units of the translation from virtual to physical
addresses are pages of 64 bytes, which results in 6 bit wide displacements, i.e.,
address offsets. Peripheral hardware is memory mapped and thus can be accessed
— and protected — in the same way as ordinary memory cells.

Typically, there are several independent software modules of different origin.
Therefore, virtual memory is logically divided into 256 packages of equal size,
such that the package address (PAD) makes up the upper 8 bits of the VEA.
Packages 0 to 2 are privileged because they control security-critical entities. Pack-
age 0 contains the security layer (SL), package 1 contains the platform support
layer (PSL), also known as hardware abstraction layer (HAL), and package 2
contains the operating system (OS). Of the remaining regular packages, those
with numbers 3 to 15 are reserved, while those with numbers 16 to 255 are
available for (third-party) application software to be uploaded on demand.

2.2 Security Requirements

The security objective relevant here is O.Mem-Access: “Area based Memory
Access Control”, defined in [WN03, §4.1]:

The TOE must provide the Smartcard Embedded Software with the capability
to define restricted access memory areas. The TOE must then enforce the par-
titioning of such memory areas so that access of software to memory areas is
controlled as required, for example, in a multi-application environment.

This means in particular that inter-package access to code and data should be
restricted and that the corresponding protection attributes should be controlled
by (specially protected) privileged packages only. Detail on the associated Secu-
rity Functional Requirements (SFRs) may be found in [WN03, §5.1.1.2].

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 103

2.3 Protection Mechanisms

Virtual memory is associated with effective access rights (EARs) determining
the read, write, and execute access of packages. Their granularity is 256 bytes,
corresponding to the lower 8 bits of the VEAs. Moreover, each physical page
block of 16 bytes, corresponding to the lower 4 bits of the PEA, is associated
with additional security attributes referred to as block protection field (BPF).
The only information we will need in the model is a predicate called PASL
specifying whether a page block should be accessible by SL only.

An EAR is given by a two-letter code where each of the letters may be W,
R, X, or -, which specify read/write access to data, read-only access to data,
executing access to code, and no access, respectively. The first letter refers to
access within a package, while the second letter refers to access of one package
(the source) to some other package (the target). The only allowed combinations
are WW, WR, RR, W-, R-, and X-. Note that the EAR gives an implicit classification
of memory sections as code or data. Code can be marked only with X-, which
indicates that inter-package code fetch is generally prohibited. Regardless of the
EAR, privileged packages have free data access to all other packages except SL.

Apart from the restrictions on (linear) code fetch, inter-package control trans-
fer is allowed only if the target holds a special PORT instruction sequence that
defines the set of packages allowed to enter.

3 Formalism and Tools

For modeling (and partially verifying) the SLE 88 memory management, we take
the ISM [OL02] approach. This means that we formally define and analyze its
security model as an Interacting State Machine (ISM) [Ohe02,OL03] within the
theorem prover Isabelle/HOL [Pau94].

Interacting State Machines (ISMs) are automata whose state transitions may
involve multiple input and output simultaneously on any number of ports. For
the SLE 88 security model we need only a single basic ISM with one input port
accepting machine (micro-)instructions and one output port issuing the reaction
of the memory management system. What we do make use of is single state
transitions as well as transition sequences which result from system runs.

Isabelle is a generic theorem prover that has been instantiated to many logics,
in particular the very practical Higher-Order Logic (HOL). HOL [PNW+] is a
predicate logic based on the simply-typed λ-calculus and thus in a sense com-
bines logical and functional programming. Proofs are conducted primarily in an
interactive fashion assisted by automatic and semi-automatic tactics.

4 System Model

In order to provide an comprehensive instructive presentation of the formal
model, we reproduce all the definitions, lemmas and theorems (essentially leav-
ing out proof scripts and a few other parts needed for technical reasons only),

104 David von Oheimb, Georg Walter, and Volkmar Lotz

augmented with comments, just as they appear in the Isabelle theory sources3.
By employing the automatic LATEX typesetting facility of Isabelle, we achieve on
the one hand maximal accuracy of the presentation, retaining the mathematical
rigor and the “flavor”4 of the machine-checked specifications, and on the other
hand good readability by using standard logical notation as far as possible and
interspersing textual explanations and motivation.

A very important design principle is to keep a high level of abstraction,
which improves readability and simplifies the proofs. Therefore, we model only
those features that are strictly relevant for security, abstracting away unnecessary
detail caused e.g. by efficiency optimizations. For the same reason we often use
a modeling technique called underspecification, i.e. for part of the logical types
and constants we do not give full definitions but only declarations of their names.

4.1 Overview

Following the standard approach to security analysis, we provide a system model
describing the abstract behavior of the memory management and formalize the
security objectives as properties of the system model. The state-based ISM ap-
proach fits well with modeling both the page table and the physical memory as
state components of the system, mapping virtual addresses to physical addresses
and physical addresses to values. Our specification of (both virtual and physical)
addresses represents the structure of the memory organization as described in
§2.1. Values are only of interest in case of PORT instructions; we leave other val-
ues unspecified. The model further includes mappings describing the assignments
of BPFs to page blocks and EARs to sections of the virtual address space.

To complete the system model, state transitions represent the different kinds
of memory access that may occur. For each of them there is a corresponding
input message for the ISM triggering a transition. Each transition produces an
output stating whether the access is granted or denied. In case of denial, we
have different output messages representing the different traps or alarms. The
computation of the output refers to our formalization of the protection rules
stated in §2.3. A transition may also result in modifications of state components,
for instance, write access to the main memory or page table updates.

4.2 Addressing

First we have to define several aspects of the SLE 88 address space introduced
in §2.1. These include the type of package addresses, PAD, defined as the disjoint
sum of privileged and regular PADs, where we enumerate all three possibilities
for privileged packages but do not specify the actual range of regular PADs:
datatype pri_PAD = SL | PSL | OS — package addresses 0 - 2

typedecl reg_PAD — package addresses 3 - 255

datatype PAD = Pri pri_PAD | Reg reg_PAD — package addresses, priv. or regular

3 Isabelle/HOL adopts the notational standards of functional programming, writing
for instance (multi-argument) function application as f x y z instead of f(x, y, z).

4 For example, the order of definitions is strictly bottom-up.

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 105

Next, we define a predicate distinguishing privileged from regular packages.

consts is_Pri :: "PAD ⇒ bool"

primrec "is_Pri (Pri p) = True"

"is_Pri (Reg r) = False"

While PADs form the upper (i.e., most significant) part of virtual addresses,
displacements DP form the lower sections used for addressing individual bytes
of memory within a page. We need to split them further because there are four
page blocks within a page that are associated with their own BPFs. Note that
despite the names that contain numbers giving bit positions, we do not actually
specify the concrete ranges of the types declared but just state that DP is the
Cartesian product of the two other types:

typedecl DP_lo — 4-bit offset within page block (with same BPF)

typedecl DP_hi — 2-bit page block address within page

types DP — 6-bit displacement within VEAs and PEAs

= "DP_hi × DP_lo"

A virtual effective address consists of the package address, a middle part that
we call VEA_mid, and the displacement. We have to further split the middle part
because only the upper 16 bits of it are used to determine the EAR associated
with the address. We also define the type VP of virtual page pointers which will
be mapped to physical page pointers.

typedecl VEA_mid_lo — 2-bit part of VEA_mid with identical EARs

typedecl VEA_mid_hi — 16-bit part of VEA_mid with different EARs

types VEA_mid — 18-bit middle part of VEA

= "VEA_mid_hi × VEA_mid_lo"

VEA_dEAR — 24-bit upper part of VEA determining EARs

= "PAD × VEA_mid_hi"

VEA — 32-bit virtual effective address

= "PAD × VEA_mid × DP"

VP — 26-bit virtual page pointer

= "PAD × VEA_mid"

Physical page pointers PP are combined with displacements to form physical
effective addresses. The part of PEAs determining the BPF is called PEA_dBPF.

typedecl PP — 16-bit physical page pointer

types PEA_dBPF — 18-bit page block address determining the BPF

= "PP × DP_hi"

PEA — 22-bit physical effective address

= "PP × DP"

We define an auxiliary function PAD extracting the package information from
any address containing a PAD as its uppermost part, simply by projecting on
this first part of the tuple: PAD (pad,x) = pad

106 David von Oheimb, Georg Walter, and Volkmar Lotz

4.3 Effective Access Rights

We enumerate all allowed EARs as defined in §2.3 and relate them with the
access that they grant by functions for intra-package and inter-package access.

datatype EAR = WW | WR | RR | Wn ("W -") | Rn ("R -") | Code ("X -")

datatype access_mode = Read | Write | Execute

consts — access modes for read/write operations

RWX_own :: "EAR ⇒ access_mode set"

RWX_other :: "EAR ⇒ access_mode set"

primrec — intra-package access

"RWX_own WW = {Read, Write}"

"RWX_own WR = {Read, Write}"

"RWX_own RR = {Read}"

"RWX_own W - = {Read, Write}"

"RWX_own R - = {Read}"

"RWX_own X - = {Execute}"

primrec — inter-package access

"RWX_other WW = {Read, Write}"

"RWX_other WR = {Read}"

"RWX_other RR = {Read}"

"RWX_other W - = {}"

"RWX_other R - = {}"

"RWX_other X - = {}"

4.4 State

Our abstract model of the SLE 88 memory management state consists of three
aspects that are crucial for the security analysis:

– the physical memory contents (where the only sort of value we are interested
in is a PORT instruction sequence with its associated set of packages) and
the PASL predicate associated with page blocks

– the essentials of the page table entries, i.e. page mapping and EARs – there is
no need for us to model complex structures like translation lookaside buffers
and multi-level page tables required merely for optimization

– the package information contained in the current program counter and in
the return address stack

For simplicity, we model PORT instructions as atomic values. We define them
as one of the alternatives in a (free) datatype, which implies that they can be
distinguished from all other instructions. This is adequate because the SLE 88
instruction layout ensures that PORT instructions are uniquely determined.

typedecl value’

datatype value = PORT "PAD set" — specifying the packages permitted to enter

| Other_value value’

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 107

The abstract state itself is defined as a record. Each of the field names in-
duces a corresponding selector function whose first argument is a value, typically
called s, of type state.
record state =

— abstraction of physical memory:

memory :: "PEA ⇒ value" — including peripherals

BPF_PASL :: "PEA_dBPF ⇒ bool" — BPF stating SL-only access to page blocks

— abstraction of page table (package descriptions and translation lookaside buffers):

PT_map :: "VP ; PP" — page mapping, relative to packages

PT_EAR :: "VEA_dEAR ⇒ EAR" — EARs for 256-byte sections

— abstraction of execution state:

curr_PAD :: "PAD" — currently executing package

stack :: "PAD list" — package part of return addresses

consts s0 :: state — the initial state

The state components BPF_PASL, PT_map, and PT_EAR each define a mapping
only for the relevant sections of physical and virtual addresses, which helps to
avoid redundancies in particular for update operations. Yet it is often convenient
to perform the lookup operation with a full PEA or VEA, respectively. The
auxiliary functions BP_PASL, PEA, and EAR, respectively, provide these liftings.

4.5 Assumed Initial State Properties

The security target [WN03] requires that all EARs should be initialized with a
reasonable value. Since the exact value is immaterial for our analysis, we apply
the standard technique, viz. to declare a constant giving the default EAR of
memory sections without actually defining its value.

consts default_EAR :: "EAR" — underspecified

The functional specification requires that only the PSL package may call the
SL package, which restricts the sets of packages within PORT instructions of
SL. We specify this for the initial state s0 with the following axiom:

axioms — checks by PORT instructions of SL

init_PORT_SL: "PEA s0 (Pri SL, la) = Some pa =⇒
memory s0 pa = PORT PADs =⇒ PADs ⊆ {Pri SL,Pri PSL}"

The axiom can be read as follows. For any VEA that belongs to SL (i.e., has
the form (Pri SL, la) for some la), if in the initial state it is mapped to any
PEA pa and a PORT instruction is stored at that address, then the associated
set PADs of allowed packages may contain only SL and PSL.

A further important requirement is that the BPFs are reasonably set: for any
physical pointer pp and page block address, PASL should be true iff the page
block is owned by SL, i.e. pp is associated with some VEA belonging to SL:

axioms init_BPF_PASL:

"BPF_PASL s0 (pp,pb) = (∃ la. PT_map s0 (Pri SL,la) = Some pp)"

axioms init_PT_EAR: "PT_EAR s0 ea = default_EAR"

108 David von Oheimb, Georg Walter, and Volkmar Lotz

It is evident that the processor should start executing in the SL package with
an empty return stack. Though we do not actually need these properties in our
proofs, we state them for symmetry:
axioms

init_PAD: "curr_PAD s0 = Pri SL" — unused

init_stack: "stack s0 = []" — unused

4.6 Aliasing via Page Table

By the construction of the page table mapping, there is the possibility that the
mapping is non-injective, i.e., that multiple VEAs refer to the same PEA. The
MMU device driver in the PSL package avoids such aliasing, but the page table
may be manipulated directly by privileged packages in order to meet extraordi-
nary needs for inter-package sharing. Our model is general enough to handle also
such forms of aliasing. Naturally, in such cases the guarantees that can be made
are weaker. In particular, conflicting EARs may arise, for example if a certain
memory page is mapped for two different packages where one package sets the
EAR such that all others should not be able to write to that memory page, while
the other package claims to have write access by setting its EAR accordingly. We
have identified a predicate on the page table contents that specifies conditions
as weak as possible but still guaranteeing inter-package consistency of EARs: if
two different packages p and p’ happen to map the same memory page then the
EARs associated with that page should be both WW or both RR.

constdefs

EARs_consistent :: "state ⇒ bool"

"EARs_consistent s ≡ ∀ p p’ vea_mid_hi vea_mid_hi’ lo lo’.

PT_map s (p,vea_mid_hi,lo) = PT_map s (p’,vea_mid_hi’,lo’) −→
PT_map s (p,vea_mid_hi,lo) = None ∨ p = p’ ∨
PT_EAR s (p,vea_mid_hi) = WW ∧ PT_EAR s (p’,vea_mid_hi’) = WW ∨
PT_EAR s (p,vea_mid_hi) = RR ∧ PT_EAR s (p’,vea_mid_hi’) = RR"

4.7 Interface

We define the SLE 88 memory management system as an Interacting State
Machine (ISM) with a rather trivial interface: it has one input port named In

and one output port named Out.

datatype interface = In | Out

The messages exchanged with the environment are either instructions given
to the system or results sent by the system. The instructions are abstractions of
the usual CPU (micro-)instructions where we focus on code fetch (which is the
first step of each instruction execution), memory read and write, various forms
of branches, and write operations to various special registers including the page

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 109

table. The chip may respond with positive or negative acknowledge or various
traps (which will be explained where appropriate) in case of denied access.

datatype message =

Code_Fetch VEA — is meant to precede each other type of instruction
— read/write operations:
| Read_Mem VEA

| Write_Mem VEA value

— control transfer operations:
| Jump VEA

| Call VEA

| Return

| Write_RetAddr VEA

— operations for setting security attributes and page table entries:
| Write_BPF_PASL PEA_dBPF bool

| Write_PT_EAR VEA_dEAR EAR

| Write_PT_map VP "PP option"

— outcome of operations:
| Ok | No — access granted or denied without generating a trap
| MPA | MPSF | RLCP | MPBF | PRIV | MCR — traps

4.8 Auxiliary Access Functions

For modeling the access control checks performed when executing access opera-
tions, it is beneficial to factor out common behavior and to reduce the complexity
of the associated system transitions by defining dedicated auxiliary functions.

The function mem_access takes as its arguments the access mode, the current
system state s, and the virtual address va to be accessed. It determines whether
the current package, which is the subject (called source) of the operation at
hand, is allowed to access — in the given mode — the package given by the
PAD of va, which is the object of the operation (called target). In particular, it
checks whether

– the virtual address is mapped to some existing PEA pa (and otherwise causes
a Memory Protection Package Boundary Fault trap)

– the source is privileged and performs a read or write access where the target
is some other package except SL 5, or the EAR associated with va allows
access with the given mode, making the distinction if the access is local or
to some other package (and otherwise causes a Memory Protection Access
Violation or MPBF trap)

– PASL is true for pa iff the target is SL (which checks consistency of the
PASL setting), or SL accesses data – for testing purposes – in a page block
not belonging to SL where PASL is true (and otherwise causes a Memory
Protection Security Field trap).

constdefs — read/write access restrictions to main memory

mem_access :: "access_mode ⇒ state ⇒ VEA ⇒ message"

5 This operation is typical for e.g. the operating system loading a package

110 David von Oheimb, Georg Walter, and Volkmar Lotz

"mem_access mode s va ≡ case PEA s va of None ⇒ MPBF | Some pa ⇒
let source = curr_PAD s; target = PAD va in

(if is_Pri source ∧ mode 6=Execute ∧ source 6=target ∧ target 6=Pri SL ∨
mode ∈ (if source=target then RWX_own else RWX_other) (EAR s va)

then (if ((BP_PASL s pa = (target = Pri SL)) ∨ BP_PASL s pa ∧
source = Pri SL ∧ mode 6= Execute ∧ target 6= Pri SL)

then Ok else MPSF)

else (if mode 6= Execute then MPA else MPBF))"

The function Call_access takes as its arguments the current system state s

and the virtual address va to be called. It grants intra-package calls (i.e., the
PAD of the target va equals the current PAD), and otherwise checks whether

– va is mapped to some PEA pa (and otherwise causes a Memory Protection
Package Boundary Fault trap)

– the value stored at pa is a PORT instruction (and otherwise causes a Privi-
leged Instruction trap)

– the PORT instruction allows the current package to enter (and otherwise
typically just returns from the call without causing a trap).

constdefs — restrictions for procedure calls

Call_access :: "state ⇒ VEA ⇒ message"

"Call_access s va ≡ if PAD va = curr_PAD s then Ok else

case PEA s va of None ⇒ MPBF | Some pa ⇒
(case memory s pa of PORT PADs ⇒
if curr_PAD s ∈ PADs then Ok else No | Other_value v ⇒ PRIV)"

The function Write_PT_access takes as its arguments the current system
state s and the package to be affected. Writing to the page table is granted only
if the current package is privileged. It must be even SL if the target package is
SL. Otherwise a Memory Protection Core Register Address trap is generated.

constdefs — restrictions for writing page table information
Write_PT_access :: "state ⇒ PAD ⇒ message"

"Write_PT_access s target ≡ if (target=Pri SL −→ curr_PAD s=Pri SL) ∧
is_Pri (curr_PAD s) then Ok else MCR"

4.9 Transitions

The core of our security model is the definition of the ISM that specifies the
overall memory management system of the SLE 88. For each kind of instruction
that may be issued (by sending it to the ISM) there is one transition rule.
Transitions are atomic and instruction execution is meant to be sequential. The
system reacts by outputting a value that indicates granted or denied access,
where the latter typically leads to a trap. In our abstract model there is no need
to specify trap handling. A couple of the transition rules have preconditions, and
most of them have postconditions specifying changes to (part of) the system

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 111

state. Since conditional changes to mappings are very common, we define the
syntactic abbreviation ”c ? f(x:=y)” ⇀ ”if c then f(x := y) else f”.

ism SLE88_MM =

ports interface

inputs "{In}"

outputs "{Out}"

messages message — instructions received or indications of success sent

states data state init "s0" name "s" — the initial state is s0

transitions

Code_Fetch: — Okay if the PAD of va equals the current PAD and has the EAR X -

and va is mapped to some page block where PASL is true iff the current PAD is SL.

in In "[Code_Fetch va]"

out Out "[mem_access Execute s va]"

Read_Mem:

in In "[Read_Mem va]"

out Out "[mem_access Read s va]"

Write_Mem: — Sets the memory cell at address va to the value v by the value v if

access is granted. If the target package is SL and PASL is false for the affected page

block, it may non-deterministically – as specified using the free variable belated_MPSF

– write the value even though the access is denied, namely if the MPSF trap is delayed.

in In "[Write_Mem va v]"

out Out "[mem_access Write s va]"

post memory := "(mem_access Write s va = Ok ∨
mem_access Write s va = MPSF ∧ belated_MPSF ∧
PAD va = Pri SL ∧ ¬BP_PASL s (the (PEA s va))) ?

(memory s)(the (PEA s va) := v)"

Jump: — Only intra-package jumps are permitted.

in In "[Jump va]"

out Out "[if PAD va = curr_PAD s then Ok else MPA]"

Call: — If the call is allowed then the current PAD is updated and its old value is

pushed on the abstract return stack.

in In "[Call va]"

out Out "[Call_access s va]"

post curr_PAD:="if Call_access s va = Ok then PAD va else curr_PAD s",

stack :="if Call_access s va = Ok then curr_PAD s#stack s else

stack s"

Return: — The first precondition states that the stack is non-empty with top element

r while the second precondition just gives an abbreviation. A return into SL is not

allowed, causing a Return Leave Current Package Mistake trap, otherwise r is popped

from the stack and becomes the new current PAD.

pre "stack s = r#rs", "ok = (r = Pri SL −→ curr_PAD s = Pri SL)"

in In "[Return]"

out Out "[if ok then Ok else RLCP]"

post curr_PAD := "if ok then r else curr_PAD s",

stack := "if ok then rs else stack s"

112 David von Oheimb, Georg Walter, and Volkmar Lotz

Write_RetAddr: — Setting the return address, i.e. the stack top, to an address whose

PAD is different from the current one is possible only for privileged packages.

pre "stack s = r#rs", "ok = (PAD va=curr_PAD s ∨ is_Pri (curr_PAD s))"

in In "[Write_RetAddr va]"

out Out "[if ok then Ok else No]"

post stack := "if ok then (PAD va)#rs else stack s"

Write_BPF_PASL: — Only SL is allowed to change the block protection field.

in In "[Write_BPF_PASL ba b]"

out Out "[if curr_PAD s = Pri SL then Ok else MCR]"

post BPF_PASL := "curr_PAD s = Pri SL ? (BPF_PASL s)(ba:=b)"

Write_PT_EAR:

in In "[Write_PT_EAR ea e]"

out Out "[Write_PT_access s (PAD ea)]"

post PT_EAR := "Write_PT_access s (PAD ea) = Ok ? (PT_EAR s)(ea:=e)"

Write_PT_map:

in In "[Write_PT_map vp ppo]"

out Out "[Write_PT_access s (PAD vp)]"

post PT_map := "Write_PT_access s (PAD vp) = Ok ? (PT_map s)(vp:=ppo)"

Having given all the above definitions, we use them for stating and proving
security properties. Many of these require additional assumptions on reasonable
behavior of the SL package, which we will give as additional axioms restricting
the transitions of the ISM.

5 Security Properties

5.1 Overview

Given the system model in the form of an ISM, we are ready to formalize the se-
curity requirements of §2.2 as properties of (sequences of) ISM state transitions.
Since the security requirements are formulated on a very high level, expressing
the properties and arguing for their completeness has been appropriately done by
discussing them with the requirement engineers, taking into account the SLE 88
specifications and the justifications given in the security target, which define
details like access modes, EARs, the PASL attribute, and their intended effect.

The main concern of the security requirements is separation of applications,
i.e., suitable restriction of inter-package access, which we address by the theorems
– interpackage_Read_Mem_respects_EAR and

interpackage_Write_Mem_respects_EAR,
addressing inter-package read/write protection, described in §5.2, and

– interpackage_transfer_only_via_Call_to_suitable_PORT_or_Return,
addressing inter-package control transfer, described in §5.4.

Another critical issue is the special protection of the SL package because it
manages the security attributes, onto which access control is based. By stating
the series of theorems given in §5.3 culminating in only SL changes SL memory

and only SL reads SL memory, and in §5.4 culminating in only PSL enters SL, we
have covered all properties implied by the security requirements.

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 113

Proving that the theorems hold for the given system model completes the
formal security analysis. The proofs show some inherent complexity, for instance
by having to consider layered protection mechanisms and effects of aliasing,
i.e., non-injective page table mappings. Still, due to adequate modeling and the
powerful Isabelle proof system, developing the machine-checked proofs has been
a matter of just a few days.

The act of conducting proofs identifies necessary assumptions concerning
the initial state and the access control attribute settings for the SL package.
In particular, we introduce a notion of consistency of EAR assignments that is
useful in case of aliasing.

5.2 Inter-package Read/Write Protection
Our first two theorems state basic properties of inter-package read and write
access. If in any state s, a read instruction for some virtual address va not
belonging to the current package is successful, then this has been done by a
privileged package accessing a package other than SL, or read (or read/write)
access is granted by the EAR associated with va. Note that the access rights
are determined at the virtual (not: physical) address level, which opens up the
possibility of inconsistencies incurred by aliasing, i.e. different access paths to
the same physical memory area. In effect, the accessibility of a memory area is
determined by the minimum protection of all related EARs. Only if inter-package
consistency of the EARs is ensured, we can guarantee that for any other virtual
address va’ belonging to a different package and mapped to the same physical
address, the associated EAR is the same (and cannot be WR because this EAR
is not symmetric) and thus no unwanted access is possible.

theorem interpackage_Read_Mem_respects_EAR: "
∧
va va’.

[[((p,s),c,(p’,s’)) ∈ Trans; hd (p In) = Read_Mem va; hd (p’ Out) = Ok;

PAD va 6= curr_PAD s]] =⇒ is_Pri (curr_PAD s) ∧ PAD va 6= Pri SL ∨
(EAR s va = WW ∨ EAR s va = WR ∨ EAR s va = RR) ∧
(EARs_consistent s −→ PEA s va’ = PEA s va −→ PAD va 6= PAD va’ −→

EAR s va’ = EAR s va ∧ EAR s va 6= WR)"

Some notational remarks are advisable here: in Isabelle formulas, ‘
∧

’ is a uni-
versal quantifier; multiple premises are bracketed using ‘[[’ and ‘]]’ and separated
using ‘; ’. The term hd (p In) refers to the input and hd (p’ Out) to the output
of the transition ((p,s),c,(p’,s’)) which takes the state s to s’.
The proof of this theorem proceeds by case distinction on the transition rules.
The only non-trivial case is the one of Read Mem where we unfold the definitions
of mem_access, RWX_other, and EARs_consistent and perform standard predicate-
logical reasoning and term rewriting.

The analogous theorem concerning the write instruction is a bit simpler be-
cause there are less cases that allow write access:

theorem interpackage_Write_Mem_respects_EAR: "
∧
va va’.

[[((p,s),c,(p’,s’)) ∈ Trans; hd (p In)=Write_Mem va v; hd (p’ Out)=Ok;

PAD va 6= curr_PAD s]] =⇒ is_Pri (curr_PAD s) ∧ PAD va 6= Pri SL ∨

114 David von Oheimb, Georg Walter, and Volkmar Lotz

EAR s va = WW ∧ (EARs_consistent s −→ PEA s va’ = PEA s va −→
PAD va 6= PAD va’ −→ EAR s va’ = WW)"

5.3 Read/Write Protection for SL Memory

The next bunch of lemmas and theorems focus on the protection of the memory
areas of the SL package.

Only SL may change the mapping of PEAs belonging to SL. More precisely,
for any sequence of transitions ts that may result from a system run and any
state transition from s to s’ within it, unless the current package is SL, the
page table mapping concerning SL is the same for s and s’. This is a simple
consequence of the definition of Write_PT_access used in the rule Write_PT_map.

theorem only_SL_changes_PT_map_of_SL:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts; curr_PAD s 6= Pri SL]] =⇒
PT_map s (Pri SL, lvp) = PT_map s’ (Pri SL, lvp)"

The analogous property holds for the EARs associated with SL memory:

theorem only_SL_changes_EAR_of_SL:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts; curr_PAD s 6= Pri SL]] =⇒
EAR s (Pri SL, lva) = EAR s’ (Pri SL, lva)"

Similarly, only privileged packages may change EARs:

theorem only_Pri_change_EAR:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts; ¬is_Pri (curr_PAD s)]] =⇒
EAR s va = EAR s’ va"

Later we will need an invariant stating that the EARs associated with SL
deny any access by other packages. In order to establish this property, we have
to assume that the default EAR denies such access as well and that SL sticks to
this policy when writing EARs:

axioms default_EAR_denies_RWX_other: "RWX_other default_EAR = {}"

axioms Write_PT_EAR_consistent_with_denial_of_RWX_other_for_SL_memory:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s = Pri SL;

hd (p In) = Write_PT_EAR (Pri SL, lva) e; hd (p’ Out) = Ok]] =⇒
RWX_other e = {}"

The necessity of such axioms makes explicit some important assumptions on the
initialization of security attributes and the behavior of SL and therefore gives
valuable feedback for system software development.

With the help of the two axioms just given and the axiom init PT EAR given in
§4.5, we can prove the invariant easily by induction on the length of transition
sequences. In terms of the Isabelle/HOL implementation of ISMs, this invariant
can be expressed in the following compact way:

lemma SL_pages_deny_RWX_other:

"Inv (λs. ∀ lva. RWX_other (EAR s (Pri SL, lva)) = {})"

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 115

It reads as follows. For any reachable state s and any virtual address within the
SL package, the associated EARs for other packages is the empty set.
Similar comments apply to the invariant that PASL is true for all memory be-
longing to SL. It requires the additional assumptions that SL writes the block
protection fields and the page table entries for its memory only in a way such
that PASL remains true:

axioms Write_BPF_PASL_consistent_for_SL_memory:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s = Pri SL;

hd (p In) = Write_BPF_PASL (pp,dp’) b; hd (p’ Out) = Ok;

PT_map s (Pri SL, lvp) = Some pp]] =⇒ b = True"

axioms Write_PT_map_consistent_with_BP_PASL_for_SL_memory:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s = Pri SL;

hd (p In) = Write_PT_map (Pri SL, lvp) (Some pp); hd (p’ Out) = Ok]] =⇒
BP_PASL s (pp,dp)"

Together with the axiom init BPF PASL also given in §4.5, we can prove the
invariant in an analogous way.

lemma SL_memory_has_PASL:

"Inv (λs. ∀ lva pa dp. PEA s (Pri SL, lva) = Some pa −→ BP_PASL s pa)"

Taking advantage of the two invariance lemmas just given, we prove that
only SL can change memory allocated to SL. The proof uses the invariant
SL memory has PASL concerning PASL three times, where in all these cases there
is aliasing in the page table such that the same physical memory area is allocated
to both SL and some non-SL package. Thus we can conclude that PASL plays
an important role for detecting such (unwanted) aliasing wrt. SL memory.

theorem only_SL_changes_SL_memory:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts; curr_PAD s 6= Pri SL;

PEA s (Pri SL, lva) = Some pa]] =⇒ memory s pa = memory s’ pa"

The theorem stating that only SL can read memory allocated to SL requires
only the invariant SL pages deny RWX other concerning EARs of SL:

theorem only_SL_reads_SL_memory:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts;

hd (p In) = Read_Mem (Pri SL, lva); hd (p’ Out) = Ok]] =⇒
curr_PAD s = Pri SL"

5.4 Inter-package Control Transfer and PORT Instructions
As can be derived easily from the transition rule for the Code_Fetch operation
and the definition of mem_access, code may be executed only from memory that
belongs to the current package and that is marked with the EAR X -:

theorem Code_Fetch_only_local_X:

" [[((p,s),c,(p’,s’)) ∈ Trans; hd (p In) = Code_Fetch va; hd (p’ Out) = Ok]]

=⇒ PAD va = curr_PAD s ∧ EAR s va = X -"

116 David von Oheimb, Georg Walter, and Volkmar Lotz

Thus, the only form of inter-package code access to be further addressed is
transfer of control where the current package changes.

Our next theorem states that the only possibilities for such control transfer
is a legal procedure call or return; in more detail: if there is a transition from
state s to s’ where the current package changes, then either it has been caused
by a call whose target is a virtual address va mapped to a physical address
pa containing a PORT instruction that explicitly allows the calling package to
enter, or it has been caused by a return to a package other than SL:

theorem interpackage_transfer_only_via_Call_to_suitable_PORT_or_Return:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s’ 6= curr_PAD s]] =⇒
(∃ va pa PADs. hd (p In) = Call va ∧ PEA s va = Some pa ∧

memory s pa = PORT PADs ∧ curr_PAD s ∈ PADs) ∨
(∃ r rs. hd (p In) = Return ∧ stack s = r#rs ∧ r 6= Pri SL)"

The proof of this theorem is straightforward by case distinction on all in-
structions available and unfolding the definition of Call access.

Much more involved is the proof of our final theorem stating that only PSL
can enter SL: we need an invariant that all PORT instructions contained in
memory allocated to SL allow only calls by SL itself and by PSL. This in turn
requires two assumptions that SL writes memory allocated to itself and the page
table entries for its memory only in a way such that the invariant is maintained:

axioms Write_Mem_PORT_to_SL_only_SL_PSL:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s = Pri SL;

hd (p In) = Write_Mem va (PORT PADs); hd (p’ Out) = Ok;

PEA s va = PEA s (Pri SL, lva)]] =⇒ PADs ⊆ {Pri SL, Pri PSL}"

axioms Write_PT_map_pointing_to_PORT_only_SL_PSL:

" [[((p,s),c,(p’,s’)) ∈ Trans; curr_PAD s = Pri SL;

hd (p In) = Write_PT_map (Pri SL, lvp) (Some pp); hd (p’ Out) = Ok;

memory s (pp,dp) = PORT PADs]] =⇒ PADs ⊆ {Pri SL, Pri PSL}"

Note the essential role of aliasing in the first of these axioms: the instruction
intended to write a PORT instruction at virtual address va might affect SL
memory even if va does not belong to SL, namely if there is some other virtual
address (Pri SL, lva) that happens to be mapped to the same physical address.

Apart from the two axioms, the proof of the invariant requires the axiom
init PORT SL given in §4.5 as well as the theorems only SL changes PT map of SL

and only SL changes SL memory.

lemma SL_PORT_SL_PSL:

"Inv (λs. ∀ lva pa PADs. PEA s (Pri SL, lva) = Some pa −→
memory s pa = PORT PADs −→ PADs ⊆ {Pri SL, Pri PSL})"

Exploiting the invariant, the theorem can be proven in just a few steps. It
reads as follows: for any sequence of transitions ts that may result from a system
run and any state transition from s to s’ within it, if SL becomes the current
package in s’, the current package of the pre-state s must have been PSL.

A Formal Security Model of the Infineon SLE 88 . . . Memory Management 117

theorem only_PSL_enters_SL:

" [[ts ∈ TRuns; ((p,s),c,(p’,s’)) ∈ set ts; curr_PAD s 6= Pri SL;

curr_PAD s’ = Pri SL]] =⇒ curr_PAD s = Pri PSL"

This finishes our abstract formal analysis of the SLE88 memory management.

6 Conclusion

We have introduced a security model for the memory management of the SLE88
smart card processor chip. Memory management contributes to security by pro-
viding access control mechanisms on the levels of both virtual and physical mem-
ory addresses, allowing to separate applications and privileged SW packages
(e.g., the operating system and the security layer SL) as well as applications
from each other. Access control is guided by a policy comprising both discre-
tionary (by effective access rights EAR) and mandatory (wrt. SL and privileged
packages) rules. Enforcing the policy is non-trivial: the ability to change EARs
and address mappings, the interacting levels of protection, aliasing in address
translation, inter-package calls, and the peculiarities of SL have to be considered.

The model gives an abstract view of the SLE88 by concentrating on memory
access and its protection only, leaving out details of the system and application
functionality. Abstraction is achieved by reductions on the data structure and
interface design and by underspecification. For instance, many data types used
in the model are declared but not actually defined.

Carrying out the formal modeling work turned out to be worthwhile, because
it provided new insights and lead to clarification of so far fuzzy concepts. For-
mal reasoning resulted in a minimal set of requirements on non-injective address
mappings that guarantee the maintenance of the security properties. These re-
quirements are given by restrictions on admissible combinations of EAR settings.
The derived notion of EAR consistency is the least restrictive one preserving se-
curity and offers much more flexibility compared to simply forbidding aliasing.
Formal analysis showed that security depends on assumptions on the initial state
(e.g., initial EAR and PASL settings) as well as on benign behavior of SL. The
assumptions can be interpreted as requirements on configuration upon delivery
and on the software development of privileged packages. They clearly indicate
the distribution of responsibility between the Target of Evaluation and its en-
vironment. Last, but not least, formal arguments lead to a clarification of the
role of PASL: the PASL mechanism does not provide additional protection in
case of weak EARs for SL, but protects against effects resulting from undesired
mapping of both SL and non-SL virtual addresses to the same physical address.

To summarize, results of the modeling and proving process are the identifi-
cation of relevant assumptions on the system environment and the derivation of
new insights in the memory management and its security properties. The cost-
benefit ratio is adequate: the whole work required no more than a six weeks effort,
largely due to the availability of adequate tool support through Isabelle/HOL
and the ISM approach. Thus, the SLE88 memory management security model
is an excellent example for the value of formal security modeling in practical
industrial-scale applications.

118 David von Oheimb, Georg Walter, and Volkmar Lotz

References

AHIP01. Atmel, Hitachi Europe, Infineon Technologies, and Philips Semiconductors.
Smartcard IC Platform Protection Profile, Version 1.0, July 2001. http:

//www.bsi.de/cc/pplist/ssvgpp01.pdf.
AHIP02. Atmel, Hitachi Europe, Infineon Technologies, and Philips Semiconductors.

Smartcard Integrated Circuit Platform Augmentations, Version 1.0, March
2002. http://www.bsi.de/cc/pplist/augpp002.pdf.

CC99. Common Criteria for Information Technology Security Evaluation (CC), Ver-
sion 2.1, 1999. ISO/IEC 15408.

LKW99. Volkmar Lotz, Volker Kessler, and Georg Walter. A Formal Security Model
for Microprocessor Hardware. In Proc. of FM’99 World Congress on Formal
Methods, volume 1708 of LNCS, pages 718–737. Springer-Verlag, 1999.

LT89. Nancy Lynch and Mark Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2(3):219–246, 1989. http://theory.lcs.mit.edu/
tds/papers/Lynch/CWI89.html.

MT00. Stephanie Motre and Corinne Teri. Using B method to formalize the Java
Card runtime security policy for a Common Criteria evaluation. In 23rd Na-
tional Information Systems Security Conference, 2000. http://csrc.nist.

gov/nissc/2000/proceedings/toc.html.
Ohe02. David von Oheimb. Interacting State Machines: a stateful approach to

proving security. In Ali Abdallah, Peter Ryan, and Steve Schneider, ed-
itors, Proceedings from the BCS-FACS International Conference on For-
mal Aspects of Security 2002, volume 2629 of LNCS. Springer-Verlag, 2002.
http://ddvo.net/papers/ISMs.html.

OL02. David von Oheimb and Volkmar Lotz. Formal Security Analysis with Inter-
acting State Machines. In Dieter Gollmann, Günter Karjoth, and Michael
Waidner, editors, Proc. of the 7th European Symposium on Research in
Computer Security (ESORICS), volume 2502, pages 212–228. Spinger, 2002.
http://ddvo.net/papers/FSA_ISM.html. A more detailed journal version is
submitted for publication.

OL03. David von Oheimb and Volkmar Lotz. Generic Interacting State Machines
and their instantiation with dynamic features. In Proc. of the 5th Inter-
national Conference on Formal Engineering Methods (ICFEM). Spinger,
November 2003. http://ddvo.net/papers/GenISMs.html, to appear.

Pau94. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994. For an up-to-date documentation, see http:

//isabelle.in.tum.de/.
PNW+. Lawrence C. Paulson, Tobias Nipkow, Markus Wenzel, et al. The

Isabelle/HOL library. http://isabelle.in.tum.de/library/HOL/.
SRS+00. G. Schellhorn, W. Reif, A. Schairer, P. Karger, V Austel, and D. Toll. Verifi-

cation of a formal security model for multiapplicative smart cards. In Frédéric
Cuppens, Yves Deswarte, Dieter Gollmann, and Michael Waidner, editors,
Proc. of the 6th European Symposium on Research in Computer Security
(ESORICS), volume 1895. Spinger, 2000.

WN03. Georg Walter and Jürgen Noller, Infineon. SLE88CX720P / m1491 Security
Target. http://www.bsi.de/???0215???, Version 1.00, March 2003.

http://www.bsi.de/cc/pplist/ssvgpp01.pdf
http://www.bsi.de/cc/pplist/ssvgpp01.pdf
http://www.bsi.de/cc/pplist/augpp002.pdf
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html
http://csrc.nist.gov/nissc/2000/proceedings/toc.html
http://csrc.nist.gov/nissc/2000/proceedings/toc.html
http://ddvo.net/papers/ISMs.html
http://ddvo.net/papers/FSA_ISM.html
http://ddvo.net/papers/GenISMs.html
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/library/HOL/
http://www.bsi.de/???0215???

	A Formal Security Model of the Infineon SLE 88 Smart Card Memory Management-1ex
	David von Oheimb cl@@auth, Georg Walter cl@@auth, Volkmar Lotz-1ex

