Interacting State Machines
— a stateful approach to proving security —

David von Oheimb

Siemens AG, Corporate Technology, D-81730 Munich
David.von.Oheimb@siemens.com

Abstract. We introduce Interacting State Machines (ISMs), a general
formalism for abstract modeling and verification of reactive systems. We
motivate and explain the concept of ISMs and describe their graphical
representation with the CASE tool AutoFocus. The semantics of ISMs is
defined using Higher-Order Logic within the theorem prover Isabelle.
ISMs can be seen as high-level variants of Input/Output Automata,
therefore we give also a semantic translation from ISMs to IOAs.

By the “benchmark” example of Lowe’s fix of the Needham-Schroeder
protocol we demonstrate the strengths of the ISM approach to express
and prove security properties in a both elegant and machine-checked way.

1 DMotivation and Related Work

When investigating the correctness, safety and security of complex IT systems,
formal modeling and verification of their key properties are essential for fulfilling
strong quality requirements. A prominent example of this approach is security
analysis according to the upper evaluation assurance levels defined in the IT se-
curity evaluation criteria catalog ITSEC [ITS91] and its successor, the Common
Criteria [CC99].

We present a formalism and tool support facilitating abstract formal analysis
of a wide range of reactive IT systems including smart cards, embedded systems,
network protocols, operating systems, databases, etc. During the development
of the framework [ON02], an important requirement was that it must be simple
and practical enough for industrial application where results are to be obtained
quickly and with limited effort. Therefore it should allow to express the key
aspects of such systems in a convenient, flexible, and intuitive way. It should
be supported by a well-developed theory and mature tools for verification and
textual as well as graphical documentation.

From an abstract perspective, common to the I'T systems mentioned above
is the notion of concurrently running distributed components with local state
that interact typically in an asynchronous way via messages. Thus any mod-
eling framework for such systems should provide built-in capabilities for both
state transitions and buffered communication. Many classical system modeling
techniques focus either on state transitions like e.g. the B [Abr96] and Z [Spi92]
notations or on interaction like the process algebra CSP [Hoa80] and the Pi-
calculus [MPW92]. There are also efforts to combine the best of both approaches,
e.g. translating CSP to B [But99] or Z to CSP [Fis00]. The drawback of such

David.von.Oheimb@siemens.com

hybrids is that the user has to deal with two different non-trivial formalisms.
Moreover, theorem proving support respecting the structure of the mixed-style
specifications seems not to be available.

There are at least three formalisms — with confusingly similar, or even equal,
names — that pursue the approach of extending non-interactive automata with
explicit input/output: both [MIB98] and [Jiir02, §3] build their definitions on
Gurevich’s ASMs [Gur97] and consequently call the resulting formalisms In-
teracting Abstract State Machines. Common to both approaches is the use of
unordered input/output buffers, which also constitutes the main conceptual dif-
ference to our approach. AutoFocus automata [HSSS96], as well as Interactive Al-
gebraic State Machines [Jir03], provide essentially unbuffered clock-synchronous
communication. Focus [BS01] uses the very abstract and mathematically elegant
— yet on the other hand more difficult — model of stream-processing functions
to describe the behavior of reactive systems. For neither of these formalisms
mechanical theorem proving support is available.

There is a simple well-developed formalism that has been designed for mod-
eling state-oriented asynchronous distributed computation from the outset: I/0
Automata (I0As) [LT89]. IOAs come with a mature meta theory that offers
compositional refinement. System properties, both safety and liveness ones, may
be described using temporal logics and proved manually or with suitable tools.
The IOA approach has been implemented by Miiller [Miil98] using the theo-
rem prover Isabelle [Pau94]. This implementation supports not only interactive
verification but also model checking [Ham99].

Thus TIOAs seem to be a good candidate for the desired framework, but
from our perspective they suffer from one severe drawback: their interaction
scheme is rather low-level. Buffered communication has to be modeled explicitly,
and transitions involving several related input, internal processing, and output
activities cannot be expressed atomically. Instead, any such transition has to
be split into multiple low-level transitions, and between these, any number of
further input events may take place due to the input-enabledness of IOAs. This
typically makes both modeling and verification rather cumbersome. Our solution
in order to avoid these disadvantages is to add extra structure, essentially by
designating parts of the local state of an automaton as input/output buffers and
introducing transitions with simultaneous input/output inspired by AutoFocus
automata [HSSS96]. The notion of ISMs implements these ideas.

In contrast to the article [OL02] emphasizing the application of ISMs to
securiy modeling, the present article focusses on the ISM semantics and on ver-
ification techniques, in particular for analyzing authentication protocols.

2 Interacting State Machines

In this section, which is the core of the current article, we introduce the no-
tion of Interacting State Machines both informally and mathematically. Then
we introduce their graphical representation within AutoFocus and their textual
representation within Isabelle/HOL. Finally, we give a semantic translation of
ISMs to TOAs.

2.1 Concepts

An Interacting State Machine (ISM) is an automaton whose state transitions
may involve multiple input and output simultaneously on any number of ports.
As the name suggests, the key concepts of ISMs are states (and in particular
the transitions between them) and interaction. By interaction we mean explicit
buffered communication via named ports (which are also called connections),
where on each port one receiver listens to possibly many senders. An ISM system
is the interleaved parallel composition of any number of ISM components where
the state of the whole system is essentially the Cartesian product of the states
of its components.

The state of an ISM consists of its input buffers and a local state. The local
state may have arbitrary structure but typically is the Cartesian product of a
control state which is of finite type and a data state which is a record of named
fields representing local variables. Each ISM has a single! local initial state.

Input Buffers:

Local State:
Control State | Data State

Fig. 1. ISM structure

Each ISM declares two sets of port names, one for input and the other for out-
put. The input buffers are a family, indexed by the port names, of (unbounded)
message FIFOs. Message exchange is triggered by any outputting ISM within
the system or by the environment. Inputs cannot be blocked, i.e. they may occur
at any time, appending the received value to the corresponding FIFO. Values
stored in the input buffers of an ISM may be processed by the ISM when it
is ready to do so. This is done by user-defined transitions, which may be non-
deterministic and can be specified in any relational style. Thus the user has
the choice to define them in an operational (i.e., executable) or axiomatic (i.e.,
property-oriented) fashion or a mixture of the two. Transition rules specify that
— potentially under some precondition that may include matching of messages
in the input buffers — the ISM consumes as much input from its buffers as ap-
propriate, makes a local state transition, and produces some output. The output
is forwarded to the input buffers of all ISMs listening to the respective ports,
which may result in direct or indirect feedback.

A run of an ISM or ISM system is any finite? (but unbounded) prefix of the
sequence of configurations reachable from the initial configuration.

L If a non-singleton set of initial states is required, this may be simulated by nonde-
terministic spontaneous transitions from a single dummy initial state.

2 Finiteness allows for a simple trace semantics, but on the other hand implies that
we cannot handle liveness properties. Yet we do not feel this as a real restriction
because security properties are essentially safety properties: if at all they involve
guarantees about the existence of future events, these typically involve timeouts.

Transitions of different ISMs that are composed in parallel are related only by
the causality wrt. the messages interchanged. Execution gets stuck when there is
no component that can perform any step. As typical for reactive systems, there
is no built-in notion of final or “accepting” states.

2.2 Semantics

This subsection gives the logical meaning of ISMs in detail. This is meant as a
precise reference and may be skipped for a first reading of the article.

Message Families Let M be the type of all messages potentially exchanged by
ISMs and PN the type of port names. Then the message families, which are used
to denote both input buffers and output patterns, have type MSGs = PN — M*
where M* is any finite sequence of elements of M. The symbol ¥ denotes the
empty message family Ap. (), the term dom(m) abbreviates {p. m(p) # ()}, i.e.
the domain of a message family m, and the infix operation m .Q. n denotes
pointwise concatenation Ap. m(p) @ n(p) of two message families m and n.

States and Transitions The type of an ISM state is STATE(Y) = MSGsx X
where the parameter X stands for the type of the local state. The set of transi-
tions has type TRANS(X) = p(STATE(X) x MSGs x STATE(X)). Each of its
elements has the form ((¢,0), 0, (i',0’)) and means that the ISM can perform a
step from local state o to ¢/, taking the current input buffer contents i to 7’ (thus
consuming as much input as required) and producing output o. Recall that i, i’
and o each denote whole families of message FIFOs.

Single Automata An ISM is given as a quadruple a = (In, Out, o9, Trans(a))
of type ISM(X) = p(PN) x p(PN) x X x TRANS(XY) where

— In is the set of input port names
Out is the set of output port names
— o0y is the initial local state

— Trans(a) is the transition relation

Such a definition is well-formed iff all the port names actually used in the tran-
sitions for input or output are contained in the sets In or Out, respectively. Note
that In and Out may overlap, which enables direct feedback.

Runs The runs Runs(a) € p((MSGsx STATE(X))*) of an ISM a are finite
sequences of configurations and is inductively defined as
dom(in) C In
(7, (in,00))) € Runs(a)

cs™ (o, (b,0)) € Runs(a)
((b,0),0,(b',0")) € Trans(a)
dom(in) C In
es™ (o0, (b)) (o, (V' .Q. in,0’)) € Runs(a)

—

The operator appends elements to a sequence. ISM traces have the form
(7, (ing, 09)), (01, (b1 Q. iny,01)), (02, (by .Q. ing,o3)), ...) where each ele-
ment of the sequence consists of the output, the input buffer contents, and the
local state of the current step. Note that in each step the environment can pro-
vide arbitrary input in for the next step of the ISM. All ISM output is visible
in the trace, whereas output not used for internal communication or feedback
(within parallel composition, as described below) is discarded.

Parallel Composition The parallel composition |;cra; (with global input
buffers) of a family of ISMs A = (a;)ics is an ISM defined as the quadruple
(AllIn\ AllOut, AllOut\ AllIn, Sy, PTrans(A)):
— Allln = J;c; Ing

AllOut = ;¢ Out;
— So = I;er(09); is the Cartesian product of all initial local states
— PTrans(A) € TRANS(Il;c1 X;) is the parallel composition of the transition

relations, defined as

jel
((b,0),0,(V,0")) € Trans(a;)
((b, 5[01), 0| p atigms (O Q- 0] gyyp,s Sl 0"])) € PTrans(A)

S[j — o] denotes the replacement of the j-th component of the tuple S by o.
m|c denotes the restriction Ap. if p € C then m(p) else () of the message family
m to the set C. The subterm OTPN\AllIn denotes those parts of the output o

provided to the environment, while 01 Anrn denotes the internal output to peer

ISMs or feedback, which is added to the current buffer contents b’.

A parallel composition is well-formed iff all its components are well-formed.
Note that there are no inter-component restrictions. This means in particular
that inputs of different components may overlap (which leads to competition on
inputs without fairness guarantees) and outputs may overlap as well (which leads
to nondeterministic interleaving of outputs). An ISM system is called closed if
AllIn = AllOut, i.e. there is no interaction with the environment.

When composing ISMs, it is occasionally necessary to prevent name clashes
or to hide connections, which can be achieved by suitable renaming of ports.

Composite Runs We define the runs of a parallel composition for simplicity
also directly (yet non-compositionally) as CRuns(A4) € o((STATE(IL;ic1X;))*)
where we do not include ISM output in the trace:

dom(in) C AllIn\ AllOut
((in, Sp)) € CRuns(A)
jel

cs™ (b, S[j—o]) € CRuns(A)

((b,0),0,(V,0")) € Trans(a;)
dom(in) C Allln\ AllOut

es™ (b, S[j—o]) (v .Q. | A -@- in, S[jr0c’]) € CRuns(A)
One can show easily that running ISMs directly in parallel is equivalent to first

combining the components in parallel, then running the system and projecting
away the output from its trace: CRuns(A) = {map,,(cs) | cs € Runs(|licra;)}.

2.3 Graphical Representation

When designing and presenting system models, a graphical representation is very
helpful since it gives a good overview of the system structure and a quick intuition
about its behavior. This is particularly important in an industrial setting: models
are developed in collaboration with clients and documented for their further use,
where strong familiarity with formal notations cannot be assumed. Therefore we
have designed the structure of ISMs in a way that they can be easily displayed
using an already available graphical tool, in this case AutoFocus.

AutoFocus [HSSS96] is a freely available prototype CASE tool for specifica-
tion and simulation of distributed systems. Components and their behavior are
specified by a combination of system structure diagrams (SSDs), state transition
diagrams (STDs) and auxiliary data type definitions (DTDs). Their execution is
visualized using extended event traces (EETs).

As an illustrating example, take two figures from our model of Lowe’s fix
of the classical Needham-Schroeder public-key authentication protocol [Low96].
This model, which we call NSL, will be described in more detail in §3.

The system structure diagram in Figure 2 shows the four components with
their local variables and the named connections between them, all including type
information. The meaning of the diagram, i.e. the mapping to the ISM semantics,
should be obvious.

Local Varables:

Local Varables:
agent Bpasar
nonce BnA
nonce BnB

agent Apear
nonce AnA
nonce AnB

Local Variables:
setimsg) known = intState(Intruder)

Local Variables:
setinonece) used = MO

1TB: m=zg

@ 1Ge= [

Fig. 2. NSL System Structure Diagram

Concerning the syntactic structure of systems, AutoFocus automata are richer
than ISMs, which we have kept as basic as possible in order to simplify their
semantics and to alleviate verification:

— We merge the AutoFocus notions of channels and ports into the notion of
ports. The motivation for the more complex AutoFocus notions is easy re-use
of components in different contexts. One can achieve an analogous effect by
renaming of ports where required.

— AutoFocus automata may be hierarchical, which can be simulated by hier-
archical use of the parallel composition operator and renaming in order to
hide internal connections.

The state transition diagram in Figure 3 shows the three control states of
the ISM Alice and the transitions between them, which have the general format
precondition : inputs : outputs : assignments. Each input is given by a port name,
the 7 symbol, and a message pattern, while each output is given by a port name,
the | symbol, and a message value. A black bullet marks the initial state.

: NA 7 Nonce(nA) © Al ! Crypt (pubK(B), {| Nonce(nA), Agent{Alice) |})
: Apeer =B, AnA =nA

nA =AnA & B = Apeer : IA ? Crypt (pubK{Alice), {| Nonce(nA), Nonce(nB), Agent(B) |})
C Al Crypt (pubK(B), {| Nonce(nB) [}) : ArB =nB

Fig. 3. NSL State Transition Diagram: Alice

Concerning state transitions, the expressiveness of ISMs is higher than the
one of AutoFocus automata because transition rules may be generic in the sense
that each of them can describe a whole family of transitions:

— multiple source and/or destination control states

— non-constant port names, offering limited support for dynamic topologies

— unbounded nondeterminism concerning the values used for outputs and/or
assignments

— changes to the local state can be given as arbitrary relational expressions

We use AutoFocus as a graphical front-end to our Isabelle implementation of
ISMs. In a typical application of our framework, a user first “paints” ISMs using
AutoFocus, saves them in the so-called Quest file format, and translates them
into suitable Isabelle theory files, described in the next subsection, utilizing a
tool program [Nan02,0N02].

Unfortunately, we cannot make use of the simulation, code generation and
model checking capabilities of current AutoFocus and its back ends, which
may be acquired by purchase from Validas [ST]. This is because its underly-
ing semantics is still clock-synchronous, due to the original emphasis of Auto-
Focus on embedded systems. In contrast, for the most of our applications, an
asynchronous buffered semantics is more adequate. An alternative asynchronous
semantics is currently under consideration also for future versions of AutoFo-
cus. Anyway, the current semantic incompatibility is not a real obstacle to us
since we are interested mainly in the graphical capabilities of AutoFocus and the
AutoFocus syntax is general enough to cover also our deviating semantics.

2.4 Isabelle/HOL Representation

When aiming at system verification, one has the fundamental choice of using
(automatic) model checking or (interactive) theorem proving techniques. We
opt for the latter because the systems that we model are typically too complex
for the capabilities of model checkers, and data abstraction techniques are either
not applicable or would lead to counterintuitive modifications of the models. We
employ Isabelle/HOL because of excellent experience with this tool.

Isabelle [Pau94] is a generic interactive theorem prover that has been instan-
tiated to many logics, in particular the very practical Higher-Order Logic (HOL).
The only drawback of using Isabelle/HOL for applications like ours is the lack
of dependent types: for each system modeled there is a single type of message
contents into which all message data has to be injected, and the same holds for
the local states of automata. Despite of this nuisance, we consider Isabelle/HOL
the most flexible and mature verification environment available. Using it, secu-
rity properties can be expressed easily and adequately and can be verified using
powerful proof methods. Furthermore, Isabelle offers good facilities for textual
presentation and documentation.

In order to represent ISMs in Isabelle theories in an adequately abstract
way that has (almost) a one-to-one correspondence to the AutoFocus represen-
tation, we have designed a new theory section for Isabelle/HOL. This section is
introduced by the keyword ism and has the following general structure?:

ism name =
ports pn_type
inputs Ipns
outputs O_pns
messages msg_type [buffers bujffer_name]
states [glob_state_type/
[control cs_expr0 :: cs_type]
[data ds_expr0/, ds-name] :: ds_type]
[transitions
(tr_name: [cs_expr —> cs_expr’]
/pre (bool_expr)*]
fin (ILpn Lmsgs)*]
Jout (O_pn O_msgs)*]
[post ((lvar_name := expr)* | ds_expr’)]

)t]
The meaning of the individual parts is as follows.

— pn_type is the Isabelle/HOL type of the port names, while I_pns and O_pns
denote the set of input and output port names, respectively.

— msg_type is the type of the messages, which is typically an algebraic datatype
with a constructor for each kind of message. The optional name buffer_name,
which defaults to ism_buffers, is the name of a logical variable that may be
used to refer to the contents of the input buffers within transition rules.

3 [...] means optional parts, (...)T means one or more comma-delimited occurrences

— The optional glob_state_type should be given if the current ISM forms part of
a parallel composition and the state types of the ISMs involved differ. In this
case, glob_state_type should be a free algebraic datatype with a constructor
for each state type of the ISMs involved.
cs_expr0 and ds_expr0 specify the initial values of the control and data state,
respectively, while cs_type and ds_type give their types. Either (i.e., not both!)
the control state or the data state may be absent.

The optional logical variable name ds_name, which defaults to st, may be
used to refer to the whole data state within transition rules.

Transitions are given via named rules. The control state (if any) before and after
the transition is specified by the expressions* cs_expr and cs_expr’.

Any expression within a rule may refer to the two logical variables mentioned
above. In particular, the value of any local variable lvar of the ISM may be
referred to by st 1var if st is the name of the data state variable. The scope of
free variables appearing in a rule is the whole rule, i.e. free variables are implicitly
universally quantified (immediately) outside each rule.

All the following parts of a transition rule are optional:

— The pre part contains guard expressions bool_expr, i.e. preconditions con-
straining the transition.

— The in part gives a set of input port names I_pn, each in conjunction with a
list I_msgs of message patterns expected to be present in the corresponding
input buffer. When performing a transition, free variables in the patterns
are bound to the actual values that have been input. Any input port not
explicitly mentioned is left untouched.

— The out part gives a set of output port names O_pns, each in conjunction
with an expression O_msgs denoting a list of values designated for output
to the corresponding port. Any output port not mentioned does not obtain
new output.

— The post part describes assignments of values expr to the local variables
lvar_name of the data state. Variables not mentioned remain invariant. Al-
ternatively, an expression ds_expr’ may be given that represents the new
data state after the transition. Assignments to the local variables suit an
operational style, whereas an axiomatic style can be achieved using ds_expr’
and suitable constraints in the preconditions.

An ism theory section as described above is translated to standard Isabelle
concepts in a straightforward way using an extension to Isabelle/HOL, as de-
scribed in [Nan02]. In particular, each ISM section is translated to a record with
the appropriate fields, the most complex one being the transition relation, which
is defined via an inductive (but not actually recursive) definition.

The meta theory of ISMs that we have defined in Isabelle/HOL includes
all concepts mentioned in §2.2; in particular well-formedness, renaming, parallel
composition, runs, and composite runs. Further auxiliary concepts are intro-
duced as well, in particular reachability and several induction schemes related

4 These need not be constant but may contain also variables, which is useful for
modeling generic transitions. In this case, one such transition has to be represented
by a set of transitions within AutoFocus.

to ISM runs. Two of them will be given in §3.3 and §3.4. The characteristic prop-
erties of these concepts, as required for system verification, are derived within
Isabelle/HOL. All details of the meta theory may be found in [ON02].

2.5 IOA Semantics

Next to the standard semantics of ISM runs given in §2.2, our Isabelle/HOL
formalization [ON02] provides also two alternatives:

— the clock-synchronous semantics of AutoFocus mentioned in §2.3, which we
do not further describe in this article, and

— atranslation of ISMs to special instances of Input-/Output Automata [LT89],
which yields an (essentially) equivalent semantics.

In this subsection we give a semi-formal description of the latter translation
in order to show both the similarities and the differences of the two automata
concepts.

The intuition behind the translation is that there is a one-to-one correspon-
dence between I0As and ISMs if each IOA is augmented by a pair of input and
output buffers holding the built-in input buffers of the corresponding ISM and
the ISM output not yet transmitted, respectively. Each ISM transition involving
input of n messages and output of m messages is split into n + 1 + m IOA ac-
tions (which may be interleaved with other actions): after the n input messages
have arrived and have been stored via n (singleton) input actions of the IOA,
an internal action performs the transition of the local state, consuming the n
messages from the input buffers and appending the m output messages to the
output buffers. These messages are later transmitted to their recipients via m
(singleton) output actions. The resulting internal actions within any one IOA
need not to be distinguished, while the internal actions of different IOAs must be
kept distinct, which we achieve easily by augmenting them with the name of the
ISM they are derived from. Recalling that IOAs communicate by synchronizing
the sender and potentially many receivers on equal external actions, it becomes
clear that each message sent or received by an ISM on a given port has to be
represented on the IOA level by an external action holding both the port name
and the message content.

More formally, a well-formed ISM C' whose input and output ports do not
overlap is translated to an IOA A as follows.

sig(A), the action signature, is the triple S = (in(S), out(S), int(S)) where
in(S), the set of input actions, contains all entities of the form Extern pn v,
where pn is an input port name and v any message potentially transferred
on the port pn.
out(S), the set of output actions, contains all entities of the form Extern pn v,
where pn is an output port name and v any message potentially trans-
ferred on the port pn.
int(S), the set of internal actions, contains the single entity Step C, where C
is the name of the ISM.
states(A), the set of IOA states, contains all possible configurations, i.e. tuples
of the form (o, (i,0)) giving the current output and input buffer state as well
as the local state of the ISM.

start(A), the set of initial states, contains the single element (&, (1, 0¢)) repre-
senting the empty output buffers, empty input buffers, and the initial local
state og of C.

steps(A), the transition relation, consists of the following three sorts of transi-
tions:

— for each input port name pn of C' and any value v that is potentially
input on the given port there is a transition labeled Extern pn v that
appends v to the input buffer associated with pn.

— for each output port name pn of C' and any value v currently at the
head position of the output buffer associated with the port pn, there is
a transition labeled by the output action Extern pn v that removes v
from the buffer .

— for each (user-defined) transition of C' there is a transition labeled Step C
that reflects the change to the local state, removes from the input buffers
all that is consumed, and appends all output to the output buffers.

part(A), the equivalence relation used for describing fairness, is empty since we
do not consider fairness, i.e. we define a so-called safe IOA [Miil98, Definition
2.2.2].

Note that the resulting automaton A is input-enabled, i.e. accepts input in any
state, and has a well-formed signature S, i.e. in(S), out(S) and int(S) are pair-
wise disjoint.

We have designed the format of the actions of A carefully such that it is
possible to perform also the inverse translation from A to C, which essentially
means projecting the input and output actions to input and output port names,
removing the output buffers from the state, and keeping only the user-defined
transitions where the ISM output is determined by the current difference of the
output buffer states. It can easily be shown that the translation from ISMs to
IOAs and back to ISMs is the identity mapping (even for ISMs that are not
well-formed).

When considering finite executions only and disallowing the overlapping of in-
put ports of ISMs composed in parallel (which would lead to multicasts according
to the IOA semantics and non-determinism according to the ISM semantics), the
direct ISM semantics and the one by translation to IOAs are equivalent. In par-
ticular, for any set of well-formed ISMs whose whose output ports do not overlap
(which is a standard precondition for IOA composition), the given translation
commutes with parallel composition on the ISM and IOA levels.

By the translation of ISMs to IOAs we get access to all the concepts available
for IOAs. Reasoning about the properties of ISMs can be done on the level of
IOAs, which means that we do not have to develop all proof methodology and
tools from scratch. Thus in particular compositional reasoning on automaton
refinement carries over to ISMs, as well as model checking support [Ham99).
Of course, it is desirable to transfer these concepts from the IOA level to the
ISM level, which we do as far as our applications require and our development
capacity allows.

We can conclude from this subsection that the expressive power of ISMs
and IOAs is the same, while ISMs offer higher-level transitions and thus more
structure that allows to model and verify reactive systems more adequately.

3 Authentication Protocol Verification

In this section we give an example of using the ISM framework for the verification
of security properties in Isabelle/HOL. In order to allow for an easy compari-
son with other theorem proving approaches, in particular [Sch97], [Pau98] and
[Coh00], we take the well-known example of the classical Needham-Schroeder
public-key authentication protocol in the version fixed by Lowe [Low96].

3.1 Modeling

The honest agent Alice tries to initiate a single connection with Bob with the
help of a nonce server NGen but in the presence of an attacker (according to
the Dolev-Yao model) called Intruder. A diagram of the global structure of the
system model as well as the state transition diagram for Alice is given in §2.3,
while the textual representation of the four ISMs each describing the behavior
of one system component can be found in the appendix. Our Isabelle/HOL for-
malization inherits the representation of messages and the intruder’s capabilities
from Paulson’s protocol verfication theories explained in [Pau98]. In comparison
to the versions given in [OL02], the model is slightly extended: we have added
the local variable 4nB to the state of Alice representing her view on the nonce
received from her peer (which hopefully is the responder Bob).

In the remainder of this subsection we extend the comparison, given in
[OL02], of our NSL model with Paulson’s model [Pau98] to Schneider’s model
[Sch97]. There are major differences in two aspects. The first of them is obvi-
ous: Schneider’s approach uses the CSP notation which does not have a notion
of states, therefore system properties can be stated only with respect to mes-
sage exchange. Sometimes even artificial messages have to be introduced just for
specification and verification purposes. The same holds for Paulson’s approach
which is not based on CSP but also operates on message traces only. The second
is more subtle: Schneider makes the implicit assumption that the nonces used
by the honest agents are known in advance and that all of them are distinct.
Paulson’s model generates fresh nonces by choosing a value not already con-
tained in the current trace of the system. Our model makes the computation
and distinctness of nonces explicit by introducing the nonce server NGen.

3.2 Authentication Theorem

We aim to prove the most critical property of NSL, namely authentication of
Alice to Bob, including session agreement. In our state-oriented ISM approach,
this can be expressed very naturally, namely entirely on the basis of the states
(in particular, knowledge and expectations) of the two honest agents:

theorem Bob_trusts_NSL: "Alice ¢ bad — (b,s)#cs € CRuns(NSL) —
(InA. Bob_state s = (Conn, (Bpeer = Alice, BnA = nA, BnB = nB))) —
(3 (b’,s’) Eset cs.

(3nA. Alice_state s’ = (Fine, (Apeer = Bob , AnA = nA, AnB = nB|))))"

If Alice does not give away her private key and in some state of a run® of NSL
Bob believes to be connected with Alice in a session identified by the nonce nB

® For technical reasons, ISM traces are constructed from right to left in Isabelle/HOL.

that he had brought up, then some time earlier Alice has indeed accepted a
connection with Bob identified by the same nonce nB.

3.3 Invariant Proof

We prove the theorem using a variant of Schneider’s rank function approach
[Sch97]. Essentially, we show that as long as Alice does not reach the state of
being happily connected to Bob in a session identified by nB (with we formulate
as Alice_Fine_with Bob nB below), Bob cannot receive the final acknowledgment
concerning nB (which is implied by the predicate noleak_all nB below) when
trying to accept a connection with Alice (expressed by Bob_Resp_only_to Alice).
Freshness of nonces, which we deal with in the next subsection, also plays a role,
captured by the predicate Alice_Wait_nA nB. The key lemma just paraphrased
can be stated formally in Isabelle/HOL as

lemma Bob_trusts_NSL_lemma: "Alice ¢ bad — cs € CRuns(NSL) —
(V (b,s) Eset cs. constrain nB s) — (VcEset cs. noleak_all nB c)"

where the predicate on the left-hand side of the implication is defined as

"constrain nB s = —Alice_Wait_nA nB s A Bob_Resp_only_to Alice s A
—Alice_Fine_with Bob nB s"
"Alice_Wait_nA nB s = Jdas. Alice_state s = (Wait,as) A AnA as = nB"
"Bobs_Resp_only_to A s = Vbs. Bob_state s = (Resp,bs) —— Bpeer bs =A4"
"Alice_Fine_with B nB s = dnA. Alice_state s =
(Fine, (Apeer = B, AnA = nA, AnB = nB|)"

and the right-hand side is a simplified version of the invariant given in [Sch97],
adapted to the use within our stateful approach. It lifts the predicate noleak
over all messages in the channels between the two agents and the intruder and
over all information in the intruder’s state:

"noleak_all nB (b,s) = Vp ¢ {NA, NB}. (Vm € set (b p). noleak nB m)
A (Vm € Intruder_known s. noleak nB m)"

"noleak nB (Agent a) = True"

"noleak nB (Nonce n) (n # nB)"

"noleak nB (Key k) (Key k € initState Intruder)"

"noleak nB {m, nf} (noleak nB m A noleak nB n)"

"noleak nB (Crypt k m) = (k=pubK Alice A (3n. m={n,Nonce nB,Agent Bobl})

V noleak nB m)"

The protocol-specific predicate noleak nB describes a superset of the messages
actually transmitted by any agent (including the intruder) during runs of the
constrained protocol, such that these messages cannot lead to sending Crypt
(pubK Bob) (Nonce nB). This means in particular that nB must not be leaked to
the intruder. In this case, one can prove that the intruder is unable to derive nB,
i.e. noleak nB is an invariant of the intruder’s behavior:

lemma init_noleak: "Vm € initState Intruder. noleak nB m"
lemma synth_analz_maintains_noleak: "Alice ¢ bad —
(Vm € known. noleak nB m) — (Vm € synth (analz known). noleak nB m)"

The great advantage of the given formulation of the key lemma is that it has
the form of an invariant that can be proved by induction on the protocol runs.

Since both sides of the rightmost implication in the key lemma are universal
quantifications on the configurations contained in a trace, the induction can be
done rather conveniently. In this case we can make use of the following (derived)
induction rule for a well-formed closed system of ISMs A = (a;);cr:

P((2,50)) — Q((, 5))
Viboo b o' csS (jel N ((byo),d,(V,0")) e Trans(a;) A
cs™ (b, S[j—o]) € CRuns(A) N (Ve € (es™ (b, S[j—0a])). P(c) ANQ(c)) —
P((.Q.d,S[j—0c'])) — Qb .Q.d,S[j—d])))
Ves € CRuns(A). (Ve € es. P(c)) — (Ve € es. Q(c))

Just observe that in order to apply this rule, one has to show only Q((&, Sp)) and
Qv .Q. o, S[j+—0c'])) while all other formulas are premises that may be taken
advantage of. Proving the key lemma — including subproofs — takes about 70
lines of proof script (in the conventional semi-automatic tactics style of Isabelle)
while applying it to get the main result takes about 20 lines.

3.4 Freshness Proof

We take about 40 extra lines of proof script to prove the freshness of nonces
produced by NGen. The lemma interfacing this fact to the above proofs reads as

lemma Alice_Wait_not_BnB:
"(b,s)#cs € CRuns(NSL) — Bob_state s = (Resp, bs) —
(V(b’,s’)€set ((b,s)#cs). —Alice_Wait_nA (BnB bs) s’)"

which means that the nonce that 41ice had brought up and which she expects to
get back from her peer is not the one brought up by Bob. We transform this proof
goal to one stating that the nonce Alice expects can be only a value received on
her port NA:

lemma Alice_Wait_NA: "cs € CRuns(NSL) —
(V (b,s) Eset cs. Nonce nB ¢ set b NA)) —
(V (b,s) €Eset cs. —Alice_Wait_nA nB s)"

which can be proved easily making use of the above induction rule again. The
transformation requires eight straightforward freshness lemmas like

lemma NB_disjoint_NA_past: "(b,s)#cs € CRuns(NSL) —
Nonce n € set (b NB) — (b’,s’)€Eset cs — Nonce n ¢ set (b’ NA)"

all of which are proved in a very schematic way using the following simple in-
duction rule for well-formed closed systems of ISMs A = (a;)ier:

P(<>7 a4, SO)
Viboo b o' esS (jel N ((bo),d,(V,0") € Trans(a;) A
es™ (b, S[j—o]) € CRuns(A) A Ples, b, S[jr—o]) —
P(es™(b,S[j—0]), ' .@Q. 0, S[j—0d']))
Ves™ (b, s) € CRuns(A). P(cs,b, s)

All details of the proofs may be found at [ON02].

4 Conclusion and Future Work

We have introduced Interactive State Machines, a formalism for modeling and
verifying the correctness and security of reactive state transition systems.

ISMs can be seen as high-level Input/Output Automata with the same ex-
pressiveness but significantly improved structuring. The ISM semantics can be
translated to the IOA semantics, inheriting all their semantic concepts (except
for fairness and liveness) as well as proof support. Yet for practicality reasons
we prefer to define, respectively implement, them directly on the ISM level. Fu-
ture work includes carrying over the concepts of refinement, compositionality
and temporal logics as well as related proof methods and tools. For applications
with restricted complexity, model checking support might be useful.

ISMs can also be viewed as variants of AutoFocus automata with an asyn-
chronous buffered communication. Users of the approach can specify and present
ISMs graphically as AutoFocus diagrams and then translate them to Isabelle
theories. Alternatively, they may define ISMs also directly within Isabelle/HOL.
The Isabelle representation enforces and supports fully formal — and thus maxi-
mally reliable — system modeling and verification. For verification, the powerful
semi-automatic proof tools of Isabelle/HOL are available.

By the an example of using ISMs for authentication protocol analysis, our
stateful approach (in contrast to e.g. Schneider’s approach using CSP [Sch97],
Paulson’s inductive method [Pau98] or Cohen’s TAPS [Coh00], which deal with
communication events only) turns out to make system modeling as well as the
formulation of security properties rather intuitive. Also the proofs provide more
insights (via the invariants and freshness properties required), while due to the
extra amount of detail, our proofs for NSL take more effort than Schneider’s and
in particular Paulson’s and Cohen’s.

Acknowledgments. We thank Volkmar Lotz, Thomas Kuhn, Haykal Tej, Jan
Jirjens, Guido Wimmel and several anonymous referees for fruitful discussions
and their comments on earlier versions of this paper.

References

Abr96. Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cam-
bridge University Press, 1996.

BS01. Manfred Broy and Ketil Stg len. Specification and development of interactive
systems. Springer, 2001.

But99. Michael Butler. csp2B : A practical approach to combining CSP and B. In
Proc. of FM’99: World Congress on Formal Methods, pages 490-508, 1999.

CC99. Common Criteria for Information Technology Security Evaluation (CC), Ver-
sion 2.1, 1999. ISO/IEC 15408.

Coh00. Ernie Cohen. Taps: A first-order verifier for cryptographic protocols. In 13th
IEEE Computer Security Foundations Workshop — CSFW’00, pages 144—158,
Cambridge, UK, 3-5 July 2000. IEEE Computer Society Press.

Fis00. Clemens Fischer. Combination and implementation of processes and data: from
CSP-0Z to Java. PhD thesis, Univ. of Oldenburg, 2000.

Gur97. Y. Gurevich. Draft of the asm guide. Technical Report CSE-TR-336-97, EECS
Dept., University of Michigan, 1997.

Ham99. Tobias Hamberger. Integrating theorem proving and model checking in
Isabelle/IOA. Technical report, TU Miinchen, 1999. http://www4.in.tum.
de/reports/Ham-MC-99.html.

Hoa80. C. A. R. Hoare. Communicating sequential processes. In R. M. McKeag and
A. M. Macnaghten, editors, On the construction of programs — an advanced
course, pages 229-254. Cambridge University Press, 1980.

HSSS96. Franz Huber, Bernhard Schétz, Alexander Schmidt, and Katharina Spies.
Autofocus - a tool for distributed systems specification. In Proceedings
FTRTFT’96 - Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 1135 of LNCS, pages 467-470. Springer-Verlag, 1996. See also http:
//autofocus.in.tum.de/index-e.html.

ITS91. Information Technology Security Evaluation Criteria (ITSEC), 1991.

Jur02. Jan Jiirjens. Principles for Secure Systems Design. PhD thesis, Oxford Uni-
versity Computing Laboratory, Trinity Term 2002.

Jiir03. Jan Jirjens. Algebraic state machines: Concepts and applications to security.
In Andrei Ershov 5th International Conference ”Perspectives of System Infor-
matics” (PSI’08), LNCS. Springer-Verlag, 2003.

Low96. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proc. of TACAS, volume 1055, pages 147-166. Springer-Verlag,
1996.

LT89. Nancy Lynch and Mark Tuttle. An introduction to input/output au-
tomata. CWI Quarterly, 2(3):219-246, 1989. http://theory.lcs.mit.edu/
tds/papers/Lynch/CWI89.html.

MIB98. M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines.
In Proc. of the 28th Annual Conference of the German Society of Computer
Science. Technical Report, Magdeburg University, 1998.

MPW92. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes. Information and Computation, 100(1):1-77, September 1992.
Miil98. Olaf Miiller. A Verification Environment for I/0 Automata Based on Formal-
ized Meta-Theory. PhD thesis, Technische Univeritdt Miinchen, 1998. See also

http://isabelle.in.tum.de/I0A/.

Nan02. Sebastian Nanz. Integration of CASE tools and theorem provers: a framework
for system modeling and verification with AutoFocus and Isabelle. Master’s
thesis, TU Miinchen, 2002. http://home.in.tum.de/nanz/csthesis/.

OLO02. David von Oheimb and Volkmar Lotz. Formal Security Analysis with Inter-
acting State Machines. In Dieter Gollmann, Giinter Karjoth, and Michael
Waidner, editors, Proc. of the 7" European Symposium on Research in Com-
puter Security (ESORICS), volume 2502, pages 212-228. Spinger, 2002. http:
//ddvo.net/papers/FSA_ISM.html. A more detailed journal version is submit-
ted for publication.

ONO02. David von Oheimb and Sebastian Nanz. ISM Homepage: Documentation,
sources and distribution, 2002. http://ddvo.net/ISM/.

Pau94. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994. For an up-to-date documentation, see http:
//isabelle.in.tum.de/.

Pau98. Lawrence C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, 6:85—128, 1998.

STt. Oscar Slotosch et al. Validas Model Validation AG. http://www.validas.de/.

Sch97. Steve Schneider. Verifying authentication protocols with CSP. In Proc. of
the 10th Computer Security Foundations Workshop (CSFW). IEEE Computer
Society Press, June 1997.

Spi92. J. Mike Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science, 2nd edition, 1992.

http://www4.in.tum.de/reports/Ham-MC-99.html
http://www4.in.tum.de/reports/Ham-MC-99.html
http://autofocus.in.tum.de/index-e.html
http://autofocus.in.tum.de/index-e.html
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html
http://isabelle.in.tum.de/IOA/
http://home.in.tum.de/nanz/csthesis/
http://ddvo.net/papers/FSA_ISM.html
http://ddvo.net/papers/FSA_ISM.html
http://ddvo.net/ISM/
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/
http://www.validas.de/

A ISM Definitions for NSL

A.1 Auxiliary Definitions

datatype A_control = Init | Wait | Fine

record A_data =

Apeer :: "agent"
AnA :: "nonce"
AnB :: "nonce"

consts A0 :: A_data
types A_state = "A_control X A_data"
datatype B_control = Idle | Resp | Conn

record B_data =

Bpeer :: "agent"
BnA :: "nonce"
BnB :: "nonce"

consts BO :: B_data

types B_state = "B_control X B_data"

types I_state = "msg set"

types N_state = "nonce set"
consts NO :: "nonce set"

datatype state = AS A_state | IS I_state | BS B_state | NS N_state

datatype channel = AT | IB | BI | IA | NA | NB

A.2 Alice

ism Alice =
ports channel
inputs "{NA,IA}"
outputs "{AI}"
messages msg
states state

control "Init" :: A_control
data "AQO", s :: A_data
transitions

Req: Init — Wait
in NA "[Nonce nAl"
out AI "[Crypt (pubK B) {Nonce nA, Agent Alicel]"
post Apeer := B, AnA := nA
Ack: Wait — Fine
pre "nA = AnA s", "B = Apeer s"
in IA "[Crypt (pubK Alice) {Nonce nA, Nonce nB, Agent B}]"
out AI "[Crypt (pubK B) (Nonce nB)]"
post AnB := nB

A.3 Bob

ism Bob =
ports channel
inputs "{NB,IB}"
outputs "{BI}"
messages msg
states state

control "Idle" :: B_control
data "BO", s :: B_data
transitions

Resp: Idle — Resp
in NB "[Nonce nB]", IB "[Crypt (pubK Bob) {Nonce nA,Agent A}]"
out BI "[Crypt (pubK A) {Nonce nA, Nonce nB, Agent Bobl}]"
post Bpeer := A, BnA := nA, BnB := nB
Ack’: Resp — Conn
pre "nB = BnB s"
in IB "[Crypt (pubK Bob) (Nonce nB)]"

A.4 Intruder

ism Intruder =
ports channel
inputs "{AI, BI}"
outputs "{IA, IB}"
messages msg
states state

data "initState Intruder", known :: "msg set"
transitions
Learn:

pre "ch € {AI, BI}"

in ch "[m]"

post "insert m known"
Utter:

pre "ch € {IA, IB}", "m € synth (analz known)"
out ch "[m]"

A.5 Nonce Generator

ism NGen =
ports channel
inputs "{}"

outputs "{NA, NB}"
messages msg
states state

data "NO", used :: "nonce set"
transitions
Cackle:

pre "ch € {NA, NB}", "n ¢ used"
out ch "[Nonce n]"
post "insert n used"

	Interacting State Machines -- a stateful approach to proving security --
	David von Oheimb

