
Using the ISM Framework

Sebastian Nanz and David von Oheimb

15th September 2003

Abstract

This manual specifies the various ISM representations and explains
the use of the ISM framework within AutoFocus and Isabelle/HOL. This
includes: installing the converter tool for AutoFocus, extending Isabelle
with ISM sections, modeling ISMs in AutoFocus, translating ISMs from
AutoFocus to Isabelle/HOL, defining ISMs directly as theory sections, and
accessing the resulting definitions.

This text is based on extracts from [Nan02, Part II].

1 Installation

1.1 Installing the Converter Tool

The converter comes in two flavors: the plug-in version is integrated in
AutoFocus, which has to be installed beforehand. It is use simply by select-
ing the right menu entry in AutoFocus. The plug-in version is recommended
for most occasions.

The standalone version is a command line application. An installation of
AutoFocus is not strictly necessary to use it, however two additional .jar-
files are needed that are part of the AutoFocus distribution. If one wants to
create or change models, an installation of AutoFocus will be necessary. The
standalone version is recommended if only the translation feature is needed and
no own models will be developed in AutoFocus.

Whenever necessary in the following sections, procedures for the plug-in and
the standalone version will be described separately.

1.1.1 Plug-in

� If AutoFocus is not installed on the target system yet, download a copy
of the latest distribution from the AutoFocus web site1 and install it ac-
cording to the installation instructions coming with the distribution. Let
af home denote the AutoFocus home directory created during the instal-
lation process (typically $HOME/AutoFocus).

� Add the following line to the file af home/Extensions.ecf:

Isabelle Theory; isa models; quest.isabelle.exporter.IsaExporterWrapper

1http://autofocus.in.tum.de/

1

http://autofocus.in.tum.de/
http://autofocus.in.tum.de/

2

where isa models is the directory where the temporarily exported .qml-
files will be saved. It is recommended to set this to an absolute path (e.g.
/home/nanz/tmp) rather than to a relative one (tmp) – if choosing the rela-
tive version, a new subdirectory (e.g. tmp) will be created for every export
in the directory from with AutoFocus has been started.

� Unzip the archive that contains the converter (Isabelle.zip) into the di-
rectory af home/Applications/Quest/. This will create Isabelle.jar
and a subdirectory isa-settings populated with some configuration files.

� One can now start AutoFocus as described in the AutoFocus documen-
tation. The AutoFocus plug-in mechanism will have created a new menu
entry:

Project->Export Project->Isabelle Theory

1.1.2 Standalone Application

� Unzip Isabelle.zip into a directory. This will create Isabelle.jar and
a subdirectory isa-settings populated with some configuration files.

� Make sure that both the files sim.jar and log4j.jar exist; these
are part of the AutoFocus distribution, contained in the directory
af home/Applications/Quest/, where af home denotes the AutoFocus
home directory created during the installation process.

� Extend the CLASSPATH with the .jar-files Isabelle.jar, sim.jar, and
log4j.jar, i.e. add full path to jar file/jar file to the path for each of
the three .jar-files (on UNIX systems these paths have to be separated by
colons :).

� One can now start the exporter by typing the following command in a shell:

java quest.isabelle.exporter.IsaExporterWrapper

Of course it is possible to use the converter tool both as a plug-in and as a
standalone version with one installation. Simply follow the installation instruc-
tions for the plug-in and in addition extend the CLASSPATH as described in the
standalone installation version.

1.2 Preparing Isabelle

If Isabelle is not installed on the target system yet, download a copy of the latest
distribution from Isabelle’s web site2 and install it according to the installation
instructions coming with the distribution.

In order to use the ism section (see section 4) the following steps have to be
performed:

� Make sure that the following files exist on the system: ISM package.ML
(ism theory extension), ISM package.thy (loads the package), and the the-
ories that define the semantics for the ISMs, i.e. at least Basis.thy and
ISM.thy. Place these files in one directory together with the theory file to
be developed, e.g. an converted model produced by the converter tool.

2http://isabelle.in.tum.de/

http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

3

� If using the Proof General interface the following additional steps have to
be performed:

– Make a backup copy of isar-keywords.el, to be found in
$ISABELLE HOME/etc/ (please refer to the Isabelle System Manual
[BW02]).

– Start Isabelle with the Proof General interface. Open and load (“use”)
the theory ISM package.thy. The package ISM package.ML will be
read.

– Execute the following command in Proof General:
ML {* ProofGeneral.write keywords "" *}.
This will create another file isar-keywords.el in the current working
directory with the ism section keywords added.

– Copy this file to the original location of isar-keywords.el.

– Restart Proof General. The section keywords will be recognized now.

2 Modeling with AutoFocus

A tutorial on modeling with AutoFocus can be found on the web site cited
before. Please refer to this document for questions on AutoFocus usage.

All models created in AutoFocus can be exported “as is” using the converter
tool. Yet in order to obtain a runnable Isabelle theory it might be necessary to
adapt the model using the remarks and hints given below; warnings and errors
during the export will show if this is necessary or not. The following remarks
should be definitely beared in mind, they are necessary for a successful export.

� It should be ensured that the project selected for export is a Quest project
and not a Java project. Java projects are not supported.

� The types of messages (i.e. the types of the ports and channels) must be
constructor-based datatypes defined in an DTD of the project. No prede-
fined types such as Int and Bool are allowed; if they occur the error “Port
... has type ... without TypeDef (predefined types cannot be
used for translation). Messages type possibly incomplete.” is
thrown.

This is necessary because in the translation ISM have to be parametrized
with exactly one message type in order to communicate.

Note: If multiple constructor-based datatypes exist, the union of the differ-
ent constructors will build a new message datatype.

Hint: If starting from scratch, it is highly recommended to define only one
datatype and use it on all ports and channels.

Hint: If a model contains ports and channels with predefined types, the
following will be sufficient to ensure a successful export: add a constructor
for each predefined type (e.g. IntVal(Int)) to a new message type and
replace the old type on all affected ports and channels with the new one.
Replace all messages m of the old type with the constructor applied to the
messages (e.g. IntVal(m)).

4

� In STDs exactly one initial control state is allowed, otherwise the error
“Found more than one initial control state.” is thrown.
Hint: If there is more than one initial control state, it is sufficient to intro-
duce a new super-initial state with non-deterministic transitions to the old
initial states.

If starting from scratch, the following hints will be very useful but they are
not necessary for a successful translation.

� Spaces and special characters in names should be avoided. In the transla-
tion such characters will be replaced with an underscore and the warning
“Changed identifier ... to” will be thrown.

� The usage of unique port names is recommended. ISM ports merge the
notion of AutoFocus ports and channels; the name of the ISM port will
be determined from the last AutoFocus port (that has no output ports)
in a directed chain of channels.
Note: If a port name occurs twice, it will be made unique by appending a
number to its name.

� If an AutoFocus component has n channels attached to the same output
port, in the translation to an ISM the corresponding n input ports will
appear. Currently, the output patterns in the transition will be replicated
accordingly rather than making use of the multicast pattern available for
ISMs.

� The usage of unique control state names is recommended. The names of
the control states will be used as constructors for the Isabelle datatype
of control states of the ISM. Clashes occur if similar constructor names
are used for different datatypes in the same theory. Setting the switch
DATATYPE LONG NAMES in the Settings file (see section 3.1) to true
will avoid these clashes by usage of prefixed constructor names, e.g.
A control.Main instead of just Main if Main is a constructor of the datatype
A control. But since this is done in all occurrences of constructors in terms
one might want to avoid this completely.

� When using hierarchical components in SSDs, note that if a component has
both a sub-structure and an automaton, the automaton will be ignored.
Most Quest tools follow this policy.

� Note that hierarchy in STDs is not supported.

� Note that the central concept in the translation is the component. For ex-
ample if an STD is not assigned to some component, it will not be exported.

� There is no way to export EETs.

3 Translation to an Isabelle Theory

3.1 Configuration Files

The converter tool comes with a set of configuration files located in the subdi-
rectory isa-settings of the installation directory. These files can change the
appearance of the generated theories.

5

Note: In order to have effect on the generation of the next theory exported,
the plug-in mechanism might require AutoFocus to be shut down and restarted
again. The Java Virtual Machine will not recognize updates on files on disk if
they are still in memory.

Note: The escape character in all files is the backslash. Entries are split on
whitespace, to avoid this, entries can be grouped by double quotes.

3.1.1 Settings

The Settings file provides a set of configuration variables to change the environ-
ment of the exporter tool, i.e. location of important files and directories, to provide
switches for theory generation, and to change user-defined theory constants.

The names and location of the following files and directories can be changed
(paths to configuration files are relative to the isa-settings directory):

PRELUDE DTD FILE NAME Name of the PreludeDTD file (see below). Default:
generated/PreludeDTD

PRELUDE DTD DATA FILE NAME Name of the additions file for the PreludeDTD (see
below). Default: PreludeDTDAdditions

OUTER SYNTAX FILE NAME Name of the Isabelle keywords file (see below). Default:
OuterSyntax

SYMBOL FILE NAME Name of the symbols file (see below). Default: Symbols

LOG CONFIG FILE NAME Name of the log4j configuration file: Default:
logging.cfg

DEFAULT SAVE PATH Absolute path of the directory where generated theory files
should be saved to. Typically a directory in $HOME.

The following switches (values true and false) affect the appearance of generated
theories:

READ PRELUDE Whether the PreludeDTD file (see below) should be read in or not.
Default: true

GENERATE FLAT ISM COMPOSITIONS Whether flat (true) or hierarchic (false)
compositions should be generated. Default: true

CHECK VALID IDENTIFIERS Whether identifiers should be checked and corrected
if clashes with Isabelle keywords occur or special characters are contained.
Default: true

X SYMBOLS ON Whether X-Symbols should be generated (true) or rather ASCII
symbols (false). Default: true

DATATYPE LONG NAMES Whether constructors should occur with prefixed name in
terms or not, e.g. A control.Main instead of just Main if Main is a con-
structor of the datatype A control, see also section 2. Default: false

GENERATE DISCRIMINATORS Whether to generate discriminator constants.
AutoFocus generates constants of the form is constr for each constructor
constr of user-defined datatypes; these can be exported as Isabelle/HOL
consts declaration. Note: Definitions for these constants are not generated

6

within AutoFocus and therefore also not available in the exported theory.
Default: false

GENERATE SELECTORS Whether to generate selector constants constr iSeli. Anal-
ogous to GENERATE DISCRIMINATORS. Default: false

Some variables affect certain names used in the theory.

ISM BASIS THEORY Name of the theory on which the generated theory should be
based on. This is usually ISM package or a theory that requires ISM package
itself. Default: ISM package

ISM PT TYPE Name of the global port type pt type. Default: port

ISM MSG TYPE Name of the global message type msg type. Default: message

ISM ST TYPE Name of the global state type st type. Default: global state

DATA VAR NAME Name of the data state variable data st var. Default: s

3.1.2 PreludeDTD

This is a generated file and is updated every time when starting an export, pro-
vided that the switch READ PRELUDE is set to true. Then the DTD module defined
in the file will be added to the modules in the exported project with the result
that definitions and declarations are available when terms are checked. Thus it
is possible to avoid redefinition of functions already defined in Isabelle while con-
stants will be still recognized as constants. Note: If type checking transitions,
declaration of all occurring functions in AutoFocus will not be avoidable, since
the addition of the Prelude DTD module is at export time.

The entries generated in the PreludeDTD come from two sources:

� Symbol table entries (see below) marked as term (namely a function or
constant) and undef (not predefined in AutoFocus): For example the
symbol table entry

elem term 2 : \<in> infixl 50 undef

will result in the line

fun elem(a0, a1) = 0;

Only the arity of the operator is used to generate the dummy definition since
no type check occurs at this moment.

� Quest language code written in the PreludeDTDAdditions file (see below)
is placed in the prelude without modifications.

7

3.1.3 Symbols

The entries in this file affect the translation of symbols by changing of the associa-
tivity and precedence of operators and type constructors and the actual symbol
representation. This is necessary since symbols in AutoFocus differ in many
points:

Example 3.1 (Precedence and Associativity)
Priorities in AutoFocus range from 1 (weak) to 4 (strong), associativity is de-
fined for infix operators and can be to the left or the right [BLS00]. Priorities in
Isabelle range from 0 (weak) to 1000 (strong), and for arbitrary mixfix constants,
associativities can be defined [Pau02] (we consider only associativity to the right
and the left).

The conjunction is now written in AutoFocus as && and has precedence 2
and associates to the left. In Isabelle the conjunction is written as ASCII symbol
& and X-Symbol ∧ (\<and>) associating to the right. Thus the entry in the symbol
table will look like this:

&& term 2 & \<and> infixr 35 predef 2

Since the term tree is already constructed by the Quest importer, only Isabelle
relevant data is necessary in the table.

Entries in the symbol table are single lines with the following 8 entries from
left to right, separated by whitespace.

� The symbol used in AutoFocus.
� One of the keywords term or type, depending on the symbol being an op-

erator or a type, respectively.
� Arity of the symbol (equal in AutoFocus and Isabelle).
� The corresponding ASCII Isabelle symbol.
� The corresponding X-Symbol or a repetition of the ASCII Isabelle symbol.
� One of the following keywords related to the Isabelle symbol:

nofix Not an infix symbol.
infixl Infix symbol. Association to the left.
infixr Infix symbol. Association to the right.
infix Infix symbol. No associativity. Example: <
infixswap Infix symbol which arguments have to be swapped. Example:

Translation of > to <

prefix Prefix symbol.

� The Isabelle operator precedence, ranging from 0 (weak) to 1000 (strong).
� One of the keywords predef or undef, depending on the symbol being pre-

defined in AutoFocus or not, respectively.

Example 3.2 (Symbol Table Entries)
Further examples how symbol table entries can look like:

Bool type 0 bool bool nofix 1000 predef
&& term 2 & \<and> infixr 35 predef
elem term 2 : \<in> infixl 50 undef
map type 2 ~=> \<leadsto> infixr 0 undef 2

8

3.1.4 PreludeDTDAdditions

The file contains code that is placed in the PreludeDTD, see above.

3.1.5 OuterSyntax

Each line of this file contains a single Isabelle keyword like datatype or ism.
New keywords can be appended at the end of the file. For a complete update, the
file isar-keywords.el, be found in $ISABELLE HOME/etc/, has to be referenced.

3.2 Structure of the Generated Theory

The converter tool tries to export all SSDs of the project and all sub-components
recursively. Each SSD “tree” will be exported to an own theory file. STDs will
be exported if assigned to a SSD. All DTDs will be exported.

The structure of a generated theory looks like shown in figure 1.

theory . . . = . . .

Type declarations and definitions exported from DTDs

typedecl . . .
datatype . . .

Type definitions and abbreviations for the global types

datatype message . . .
types state . . .
datatype port . . .

Constants and constant definitions

consts . . .
constdefs . . .
consts . . . axioms . . .

ISMs and parallel compositions

ism . . .

end

Figure 1: Structure of a Generated Theory

9

3.3 Export with AutoFocus Plug-In

To export a project using the plug-in version of the tool, select the project from the
project tree and choose Export Project -> Isabelle Theory from the Project
menu as shown in figure 2.

Figure 2: Snapshot of the AutoFocus Export Menu

3.4 Export with Standalone Application

To start the standalone version of the tool, type

java quest.isabelle.exporter.IsaExporterWrapper

with the necessary arguments in a shell. If no arguments are given, the following
usage message will appear:

Usage: java quest.isabelle.exporter.IsaExporterWrapper [OPTIONS] FILE

Options:

-h, --help print this help message

-p BOOL, --prelude BOOL use prelude DTD file: true/false

-a, --ascii use ascii symbols only (no x-symbols)

-c BOOL, --flat-comp BOOL create flat compositions of ISMs

(else hierarchic): true/false

-v BOOL, --validation BOOL check if identifiers are valid: true/false

-b PATH, --base-path PATH set PATH to "isa-settings" directory

-l BOOL, --long-names BOOL expand datatype names: true/false

Arguments:

FILE file in Quest format (.qml)

Note: The command-line flags overwrite the flags described in section 3.1.
This is especially useful for fast testing of the appropriate settings.

10

4 ism Theory Section

4.1 Description

In order to facilitate the usage of ISMs, a new theory section has been defined.
Theory sections in Isabelle start with a keyword (for example consts, inductive,
or in this case ism) and can extend the current theory by new definitions and
theorems. In this case, for each ISM a record with all necessary fields is created.
This includes the set of possible translations, which is defined inductively.

This section describes the syntax and semantics of the individual parts of an
ISM section. For further motivation and more details of the ISM semantics see
[Ohe02, ?].

A description of the syntactic structure of the section in an BNF-like style can
be found below. For the sake of readability we have simplified the specification;
it is correct with the following additional remarks:

� At least one of the subsections control or data has to be present.

� The list elements within the subsections pre, in, out, and post are sepa-
rated by commas.

� Control state transitions can be specified only if the subsection control is
present.

� Postconditions with the subsection post can be specified only if the subsec-
tion data is present.

� Instead of -> one may also use the X-Symbol →.

ism name ((param name :: param type))∗ =
ports pn type
inputs I pns
outputs O pns

messages msg type
[commands cmd type [default cmd expr’]]
states [state type]
[control cs type [init cs expr0]]
[data ds type [init ds expr0] [name ds name]]

[transitions
(tr name [attrs]: [cs expr -> cs expr’]
[pre (bool expr)+]
[in ([multi] I pn I msgs)+]
[out ([multi] O pn O msgs)+]
[cmd cmd expr]
[post ((lvar name := expr)+ | ds expr’)]
)+]

The meaning of the individual parts is as follows.

� The ISM definition will be referred to by name. It may have any number
of parameters, each declared by param name and its corresponding type
param type. The parameters may be used throughout the definition body.

11

� The type expression pn type gives the Isabelle/HOL type of the port names,
while I pns and O pns denote the set of input and output port names,
respectively. If ports can be changed dynamically, like with dynamic ISMs,
the sets given here specify the initial or maximal interface.

� The type expression msg type gives the type of the messages, which is typi-
cally an algebraic datatype with a constructor for each kind of message.

� The optional cmd type specifies the type of ISM commands. It must be given
if commands are used in the transitions. The optional default command
cmd expr’, which typically is the empty list of commands, can be used to
shorten the specification of transitions that do not actually issue commands.

� The optional state type should be given if the current ISM forms part of a
parallel composition and the state types of the ISMs involved differ. In this
case, state type should be a free algebraic datatype with a constructor for
each state type of the ISMs involved.
The type expressions cs type and ds type give the types of the control and
data state, respectively, while the optional terms cs expr0 and ds expr0
specify their initial values — if not given, they default to some arbitrary
value. Either (i.e., not both) the control state or the data state may be
absent.
The optional logical variable name ds name, which defaults to s, may be
used to refer to the whole data state within transition rules.

Transitions are given via named rules where attrs is an optional list of at-
tributes, e.g. [intro]. The rule can be accessed after defining the ISM via
name.transs.tr name. The control states (if any) before and after the transi-
tion are specified by the expressions3 cs expr and cs expr’.

Expressions within a rule may refer to the logical data state variable mentioned
above. In particular, assuming that s is the name of the data state variable, then
the value of any local variable lvar of the ISM may be referred to by lvar s. The
scope of free variables appearing in a rule is the whole rule, i.e. free variables are
implicitly universally quantified (immediately) outside each rule.
All the following parts of a transition rule are optional:

� The pre part contains guard expressions bool expr, i.e. preconditions con-
straining the enabledness of a transition.

� The in part gives input port names (or sets of them if preceded by multi)
I pn, each in conjunction with a list I msgs of message patterns expected
to be present in the corresponding input buffer(s). When an ISM executes
a transition, any free variables in message patterns are bound to the actual
values that have been input. Each port names should appear at most once
within a in part. Any input port not explicitly mentioned is left untouched.

� The out part gives output port names O pn, each in conjunction with an
expression O msgs denoting a list of values designated for output to the
corresponding port. The variant using multi is used to specify multicasts.

3These need not be constant but may contain also variables, which is useful for modeling
generic transitions. In this case, one such transition has to be represented by a set of transitions
within AutoFocus.

12

Each port name should be used at most once within each out part. Any
output port not mentioned does not obtain new output.

� The cmd part gives the ISM command cmd expr associated with the cur-
rent transition. Such a command can be given in each transition if the
commands subsection is present.

� The post part describes assignments of values expr to the local variables
lvar name of the data state. Variables not mentioned remain invariant.
Alternatively, an expression ds expr’ may be given that represents the entire
new data state after the transition. Assignments to the local variables suit an
operational style, whereas an axiomatic style can be achieved using ds expr’
(in conjunction with suitable constraints in the preconditions).

4.2 Specification

Let cmd type′ denote cmd type if given, otherwise the trivial type unit. Let
st type denote the local state type, that is the Cartesian product of the control
state and the data state type (ctrst type × data st type) if both types exist,
otherwise only the existing control or data state type. Let state type′ denote
state type if given, otherwise st type.

The ism theory section will add the following constants and definitions to the
theory.

name.transs: Constant that is an inductively defined set of type
param type1 ⇒ . . . ⇒ param typen ⇒
(cmd type′, pn type,msg type, state type′) trans set.

name.transs.intros: List of introduction rules defining name.transs.
name.transs.tr name: The single introduction rule corresponding to tr name,

defined as follows.

� Let bool expr1, . . . , bool exprk denote the k preconditions of the rule
(k may be 0).

� Let i be the empty message family ¤ if no inputs are given. Otherwise
for inputs I msgs1, . . . , I msgsm on ports I pn1, . . . , I pnm let i be
the expression ¤(I pn1 := I msgs1, . . . , I pnm := I msgsm)

� Let o be the empty message family ¤ if no outputs are given. Otherwise
for outputs O msgs1, . . . , O msgsm on ports O pn1, . . . , O pnm let o
be the expression ¤(O pn1 := O msgs1, . . . , O pnm := O msgsm)

� σ denotes the state of type state type′ before the transition, as fol-
lows. Let ds name′ be ds name if given, otherwise s. Let st be the
pair (cs expr, ds name′) if both the control and data state are given,
otherwise cs expr or ds name′, depending on which part exists. If
the state type is not given, σ equals st. Otherwise, let constr denote
the4 constructor for state type′ with a single argument of type st type.
Then σ equals constr st.

4Unless exactly one such constructor is found, an error occurs.

13

� σ′ is defined like σ with the difference that cs expr is replaced by
cs expr′ and the data state may be modified (if a postcondition is
given), as follows. If ds expr′ is given, ds name′ is replaced by this
expression. Otherwise, let lvar name1, . . . , lvar namen denote the
field names of updated fields in the data record, expr1, . . . , exprn

the update expressions; then the data state will be modified to:
dsname′(|lvar name1 := expr1, . . . , lvar namen := exprn|)

� Let cmd be cmd expr if given, otherwise cmd expr′.

The transition rule can then be written as:
[[bool expr1; . . . ; bool exprk]] =⇒
((i, σ), cmd, (o, σ′)) ∈ name.transs p1 . . . pn

name.elims: Elimination rule for name.transs as would be generated by an in-
ductive cases section. Note that this is the same as name.transs.elims
but simplified according to the current simpset.

name.ism: Constant of type param type1 ⇒ . . . ⇒ param typen ⇒
(cmd type′, pn type,msg type, state type′) ism that represents the ISM.

name.ism def: Definition of the constant name.ism. Let st expr0 denote the
pair of the initial control and data state (cs expr0, ds expr0) in case both
exist, otherwise the existing initial state (either cs expr0 or ds expr0). The
definition looks like this:

name.ism p1 . . . pn ≡ (|inputs = I pns, outputs = O pns,
init = st expr0, trans = name.transs p1 . . . pn|)

Besides new definitions and constants for each ISM the following syntax
translations will be added internally.

syntax (symbols)
name transs syntax :: param type1 ⇒ . . . ⇒ param typen ⇒

(pn type,msg type) msgss ⇒ (pn type,msg type) msgss ⇒
cmd type ⇒ state type′ ⇒ state type′ ⇒ bool

(name: : . . . :〈 , 〉 − → 〈 , 〉 [10, . . . , 10, 10, 10, 10, 10, 10] 60)
translations

name:p1: . . . pn:〈i, s〉 −c→ 〈o, s′〉

((i, constr s), c, (o, constr s′)) ∈ name.transs p1 . . . pn

where constr denotes the constructor (if any) as defined above.

4.3 Accessing Constants and Definitions

We present here an example that is kept as simple as possible just to explain the
access to the structures specified in Section 4.2.
theory Example = ISM package:

We define a datatype port representing the ports of the ISM.

datatype port = p1 | p2

14

Also the state is simple: two control states c1, c2 and the data state consists
of a record with two fields of type nat.

datatype A_control = c1 | c2

record A_data =

f1 :: nat

f2 :: nat

types A_state = "A_control × A_data"

Only two messages can be sent over the port.

datatype message = m1 | m2

The ISM A has one input and one output port. If A is in its initial state the
control state is c1 and both local variables f1, f2 are set to 0. There is only
one transition named t1: if in control state c1, the variables are both 0, and the
message m1 is received on port p1, the variables will be set to 1 and the message
m2 is sent on the output port p2. After the transition the control state is c2.

ism A =

ports port

inputs "{p1}"

outputs "{p2}"

messages message

states
control c1 :: A_control

data "(|f1 = 0, f2 = 0 |)", s :: A_data

transitions
t1: c1 → c2

pre "f1 s = 0", "f2 s = 0"

in p1 "[m1]"

out p2 "[m2]"

post f1 := 1, f2 := 1

The following constants are now defined.

term A.ism

term A.transs

The definition of the ISM A can be accessed as A.ism def.

thm A.ism_def

"ism ≡ (|inputs = {p1}, outputs = {p2},

init = (c1, (|f1 = 0, f2 = 0 |)), trans = transs |)"

Also the defined rule can be accessed. All other theorems defined in normal
inductive definitions (e.g. A.transs.intros) are of course also available.

thm A.transs.t1

" [[f1 ?s = 0; f2 ?s = 0]] =⇒ ((¤(p1 := [m0]) .@. ?i, c1, ?s),

¤(p2 := [m2]), ?i, c2, ?s(|f1 := 1, f2 := 1 |)) ∈ transs"

end

REFERENCES 15

References

[BLS00] Peter Braun, Heiko Lötzbeyer, and Oscar Slotosch. Quest Users Guide.
TU München, March 2000.

[BW02] Stefan Berghofer and Markus Wenzel. The Isabelle System Manual, 2002.
http://isabelle.in.tum.de/doc/system.pdf.

[Nan02] Sebastian Nanz. Integration of CASE tools and theorem provers: a
framework for system modeling and verification with AutoFocus and
Isabelle. Master’s thesis, TU München, 2002. http://home.in.tum.
de/nanz/csthesis/.

[Ohe02] David von Oheimb. Interacting State Machines: a stateful approach to
proving security. In Ali Abdallah, Peter Ryan, and Steve Schneider,
editors, Proceedings from the BCS-FACS International Conference on
Formal Aspects of Security 2002, volume 2629 of LNCS. Springer-Verlag,
2002. http://ddvo.net/papers/ISMs.html.

[Pau02] Lawrence C. Paulson. The Isabelle Reference Manual, 2002. http://
isabelle.in.tum.de/doc/ref.pdf.

http://isabelle.in.tum.de/doc/system.pdf
http://home.in.tum.de/nanz/csthesis/
http://home.in.tum.de/nanz/csthesis/
http://ddvo.net/papers/ISMs.html
http://isabelle.in.tum.de/doc/ref.pdf
http://isabelle.in.tum.de/doc/ref.pdf

	Installation
	Installing the Converter Tool
	Plug-in
	Standalone Application

	Preparing Isabelle

	Modeling with AutoFocus
	Translation to an Isabelle Theory
	Configuration Files
	Settings
	PreludeDTD
	Symbols
	PreludeDTDAdditions
	OuterSyntax

	Structure of the Generated Theory
	Export with AutoFocus Plug-In
	Export with Standalone Application

	ism Theory Section
	Description
	Specification
	Accessing Constants and Definitions

